55 lines
1.1 KiB
Plaintext
55 lines
1.1 KiB
Plaintext
& Example Ludus implementation of the Sierpinski triangle.
|
||
& https://en.m.wikipedia.org/wiki/L-system#Example_5:_Sierpinski_triangle
|
||
|
||
& The Sierpinski triangle drawn using an L-system
|
||
& variables : F G
|
||
& constants : + −
|
||
& start : F−G−G
|
||
& rules : (F → F−G+F+G−F), (G → GG)
|
||
& angle : 120°
|
||
|
||
& set a length for each segment
|
||
let length = 10
|
||
|
||
& set an angle for all turns, default to 1/3 for triangles
|
||
let angle = inv(1)
|
||
|
||
& define 'G' function from the grammaer
|
||
fn g! {
|
||
(0) -> fd!(length)
|
||
(n) -> {
|
||
g!(dec(n))
|
||
g!(dec(n))
|
||
}
|
||
}
|
||
|
||
& define 'F' function from the grammaer
|
||
fn f! {
|
||
(0) -> fd!(length)
|
||
(n) -> {
|
||
f!(dec(n))
|
||
rt!(angle)
|
||
g!(dec(n))
|
||
lt!(angle)
|
||
f!(dec(n))
|
||
lt!(angle)
|
||
g!(dec(n))
|
||
rt!(angle)
|
||
f!(dec(n))
|
||
}
|
||
}
|
||
|
||
& this function defines the starting pattern.
|
||
& each of the f! and g! calls expand based on the grammar at the top of this example
|
||
fn sierp! (times) -> {
|
||
f!(times)
|
||
rt!(angle)
|
||
g!(times)
|
||
rt!(angle)
|
||
g!(times)
|
||
}
|
||
|
||
& call the base function with a number of iterations
|
||
& remember, this is exponential! high numbers can freeze your browser.
|
||
sierp!(7)
|