rudus/src/world.rs

206 lines
5.7 KiB
Rust
Raw Normal View History

2025-06-26 05:28:33 +00:00
use crate::value::Value;
use crate::vm::{Creature, Panic};
use ran::ran_u8;
use std::collections::{HashMap, VecDeque};
const ANIMALS: [&str; 24] = [
"turtle",
"tortoise",
"hare",
"squirrel",
"hawk",
"woodpecker",
"cardinal",
"coyote",
"raccoon",
"rat",
"axolotl",
"cormorant",
"duck",
"orca",
"humbpack",
"tern",
"quokka",
"koala",
"kangaroo",
"zebra",
"hyena",
"giraffe",
"leopard",
"lion",
];
#[derive(Debug, Clone, PartialEq)]
enum Status {
Empty,
Borrowed,
Nested(Creature),
}
#[derive(Debug, Clone, PartialEq)]
struct Zoo {
procs: Vec<Status>,
empty: Vec<usize>,
ids: HashMap<&'static str, usize>,
dead: Vec<&'static str>,
}
impl Zoo {
pub fn new() -> Zoo {
Zoo {
procs: vec![],
empty: vec![],
ids: HashMap::new(),
dead: vec![],
}
}
pub fn put(&mut self, mut proc: Creature) -> &'static str {
if self.empty.is_empty() {
let rand = ran_u8() as usize % 24;
let idx = self.procs.len();
let id = format!("{}_{idx}", ANIMALS[rand]).leak();
proc.id = id;
self.procs.push(Status::Nested(proc));
self.ids.insert(id, idx);
id
} else {
let idx = self.empty.pop().unwrap();
let rand = ran_u8() as usize % 24;
let id = format!("{}_{idx}", ANIMALS[rand]).leak();
proc.id = id;
self.ids.insert(id, idx);
self.procs[idx] = Status::Nested(proc);
id
}
}
pub fn kill(&mut self, id: &'static str) {
if let Some(idx) = self.ids.get(id) {
self.procs[*idx] = Status::Empty;
self.empty.push(*idx);
self.ids.remove(&id);
self.dead.push(id);
}
}
pub fn catch(&mut self, id: &'static str) -> Creature {
if let Some(idx) = self.ids.get(id) {
let mut proc = Status::Borrowed;
std::mem::swap(&mut proc, &mut self.procs[*idx]);
let Status::Nested(proc) = proc else {
unreachable!("tried to borrow an empty or already-borrowed process");
};
proc
} else {
unreachable!("tried to borrow a non-existent process");
}
}
pub fn release(&mut self, proc: Creature) {
let id = proc.id;
if let Some(idx) = self.ids.get(id) {
let mut proc = Status::Nested(proc);
std::mem::swap(&mut proc, &mut self.procs[*idx]);
} else {
unreachable!("tried to return a process the world doesn't know about");
}
}
}
pub struct World {
procs: Zoo,
mbxes: HashMap<String, VecDeque<Value>>,
active: Creature,
// TODO: we need a lifetime here
main: &'static str,
}
impl World {
pub fn new(proc: Creature) -> World {
let mut creatures = Zoo::new();
let id = creatures.put(proc);
let caught = creatures.catch(id);
World {
procs: creatures,
mbxes: HashMap::new(),
active: caught,
main: id,
}
}
pub fn spawn(&mut self, proc: Creature) -> Value {
let id = self.procs.put(proc);
Value::Keyword(id)
}
pub fn send_msg(&mut self, id: &'static str, msg: Value) {
let mbx = self.mbxes.get_mut(id).unwrap();
mbx.push_back(msg);
}
pub fn sleep(&mut self, id: &'static str) {
// check if the id is the actually active process
// return it to the nursery
// get the next process from the nursery
}
pub fn get_msg(&self, id: &'static str) -> Option<(usize, Value)> {
// check if the id is of the active process
todo!()
}
pub fn match_msg(&mut self, id: &'static str, idx: usize) {
// again, check for activity
// delete the message at idx, which we gave along with the value as the tuple in get_msg
}
pub fn r#yield(&mut self, id: &'static str) {
// check if the id is active
// swap out the currently active process for the next one
}
pub fn panic(&mut self, id: &'static str) {
// TODO: devise some way of linking processes (study the BEAM on this)
// check if the id is active
// check if the process is `main`, and crash the program if it is
// kill the process
// swap out this process for the next one
}
pub fn complete(&mut self, id: &'static str, value: Value) {
// check if the id is active
// check if the process is main
// if it is: stash the value somehow and exit the program cleanly
}
pub fn run(&mut self) -> Result<Value, Panic> {
todo!()
}
// TODO:
// * [ ] Maybe I need to write this from the bottom up?
// What do processes need to do?
// - [ ] send a message to another process
// - [ ] tell the world to spawn a new process, get the pid back
// - [ ] receive its messages (always until something matches, or sleep if nothing matches)
// - [ ] delete a message from the mbx if it's a match (by idx)
// - [ ] yield
// - [ ] panic
// - [ ] complete
// Thus the other side of this looks like:
// * [x] Spawn a process
// * [x]
}
// Okay, some more thinking
// The world and process can't have mutable references to one another
// They will each need an Rc<RefCell<PostOffice>>
// All the message passing and world/proc communication will happen through there
// And ownership goes World -> Process A -> World -> Process B
// Both the world and a process will have an endless `loop`.
// But I already have three terms: Zoo, Creature, and World
// That should be enough indirection?
// To solve tomorrow.