
Visual Modeling with Logo

Exploring with Logo

E. Paul Goldenberg, editor

1. Exploring Language with Logo by E. Paul Goldenberg and Wallace Feurzeig

2. Visual Modeling with Logo by James Clayson

A Structured Approach to Seeing

Visual Modeling with Logo

James Clayson

The MIT Press

Cambridge , Massachusetts

London , England

Library of Congress Cataloging -in-Publication Data

James

Visual

language) 2. Computer

IIIIIIIIIIIIIICLAYSON
VIS MOOLWITHLOGO

@ 1988 by the Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form or by

any electronic or mechanical means (including photocopying , recording , or

information storage and retrieval) without permission in writing from the

publisher .

This book was printed and bound by Halliday Lithograph in the United States

of America .

Clayson,

modeling with Logo.

(Exploring with Logo; 2)

Includes index.

1. LOGO (Computer program

graphics. I. Title. II . Series.

QA76.73.L63C52 1987 006.6'6

ISBN 0-262-53069-4 (pbk.)

87-3894

MIT Press

To L.A.

Introduction 1

Contents

Series Foreword ix

Preface xi

Acknowledgments xiii

1

2 Visual Modeling 34

3 Visual Discovery 63

4 Circular Grids 115

5 Rectangular and Random Grids 163

6 Islamic Designs 235

7 Organic Designs 286

8 Space 337

9 Closure 379

Index 389

Series Foreword

The aim of this series is to enhance the study of topics in the arts, humanities ,

mathematics , and sciences with ideas and techniques drawn from the world of

artificial intelligence --specifically , the notion that in building a computer

model of a construct, one gains tremendous insight into the construct. Each volume

in the series represents a penetrating yet playful excursion through a single

subject area such as linguistics , visual modeling , music , number theory , or

physics, written for a general audience.

Preface

'What is the use of a book: ' thought Alice,

Lewis Carroll
"without pictures"

In the fall of 1982 I started to teach a course called " Problems in Visual

Thinking ." It was offered jointly by Parsons School of Design in Paris and the

American College in Paris . Looking back now , perhaps I should have replaced

the word Problems with something less pathological - Explorations maybe . But

that original title really indicated my reason for inventing the course in the

first place . I taught courses in statistics and operations research in which I

encouraged my students to add a bit of visual thinking to their quantitative

analysis , but each semester I was disappointed .

I continued my pleas for visualization because I saw that the few students

who could introduce a little of it into their work discovered - more often than

not - the most surprisingly useful things . These visualizers seemed to me less

intimidated by vagueness because their picture -making abilities gave them

concrete starting points , and they seemed to enjoy playing around with the

painted pieces of complex problems . Perhaps , I thought , their visual play

encouraged them to see where more analytic approaches might usefully be

applied .

My problem was to discover how to teach visual thinking to those students

who had problems doing it naturally . It was obvious that most of my students

lacked visual vocabulary and few of them had ever been in an art or drawing

studio . How was I to cancel out this liability ? Luckily I had managed an art

school and knew a bit about people who had design experience. Professional art

students certainly have the visual baggage, but most are severely lacking in

analytical skills . " Let 's put these two groups together , " I thought , "and set

them a series of tasks." The art students can show their colleagues a bit about

color and design, while the non-art crew can gently introduce the art students to

a little quantitative model building . The Logo computer language struck me as an

appropriate medium of instruction - just enough of the visual and just enough of

the analytical . Problems in Visual Thinking was born .

There were no suitable texts , so I set out to write one , and this book is the

most recent set of class notes . It is structured around a series of exercises that

encourage visual thinking in students from a variety of different backgrounds .

I wish that I could claim total success in turning my students into better

problem -solvers by first turning them into more effective visualizers . But I fear

that my record is mixed . I am convinced , however , that for some people ,

certainly not all , visual model building is an enormously enjoyable activity that

leads them in new and surprising directions . And since that activity falls nicely

within the terms of reference of a liberal arts education , I am quite pleased

with the classroom results I have seen .

Most thanks are due to my students because this book was realized with

their help . You will find quotes and illustrations from them scattered

throughout the text . Thanks, too, go to Roger Shepherd, the first Director of

Parsons in Paris, who not only encouraged me to start this project but helped to

teach it for the first year . Were it not for Frank Satlow of MIT Press , this book

would still be in a basement Xerox room . I also benefited from his readers '

reports .

The final construction of the manuscript , however , was a solo affair ;

what ,ever opacities, inconsistencies, or mistakes remain are mine .

Preface

xii

James Clayson

Paris, 1987

Ackn owl edg me nts

I wish to thank the following for granting permission to reproduce illustrations

Piet Mondrian , Composition with red yellow and blue, Tate Gallery , London ,

in this book :

Musee d 'art moderne de la ville de Paris , courtesy of

David Hackney , Sunbather, courtesy of the artist .

courtesy of SP ADEM and ARS.

Robert Delaunay , Disque,

ADAGP and ARS.

Wassily Kandinsky , Several Circles, No. 323 (1926), Solomon R. Guggenheim

Museum , New York . Photograph by Robert E. Mates.

Wassily Kandinsky , First study for Several Circles (1926), Collections du Musee

National d'art moderne, Paris, courtesy of ADAGP and ARS.

Gustav Klimt , Poissons rouges, courtesy Giraudon / Art Resources, New York .

Gustav Klimt , Rosiers sous les arbres, courtesy Giraudon / Art Resource, New

York .

Piet Mondrian , Compositie met kleurvlakjes no. 3, Collection Haags

Gemeentemuseum, the Hague, courtesy of Beeldrecht, The Netherlands / V AGA ,

New York .

Abteiberg M6nchengladbach , photo by Ruth Kaiser.

Acknowledgments

Brussels .

Jean Tinguely , Homage Ii Marcel Duchamp , courtesy of the Stadtisches Museum

Henry van de Velde , Faits du village VII - La ravaudeuse , Musees royaux des

Beaux-Arts , Brussels.

Vincent van Gogh , Van Gogh's bedroom, courtesy Giraudon / Art Resources , New

York .

Andy Warhol , Marilyn Monroe, courtesy Giraudon / Art Resource, New York .

Architectural trees reproduced from Bob Greenstreet , Graphics Sourcebook

(Prentice-Hall, Englewood Cliffs, NJ, 1984).

Celtic knots reproduced from George Bain , Celtic art : the methods of construction

(Dover, New York, 1973).

Graphics (Dover, New York, 1975).

Farkas

forms :

" Impossible

Leonardo, volume

Islamic tile designs reproduced from J. Bourgoin , Arabic geometrical pattern and

design (Dover , New York , 1973), and from Keith Critchlow , Islamic patterns

(Schocken Books, New York , 1976).

xiv

Computer - generated globes reproduced from Melvin L . Prueitt , Computer

grids reproduced from Tamas F . Farkas and Peter Erdi ,

experimental graphics and theoretical associations , "

18 , number 3 (1985) , pages 179 - 183 , copyright @ 1985 ISAST .

Piet Mondrian, New York City 1, Collections du Musee National d'art moderne,

Paris, courtesy of Beeldrecht, The Netherlands/ V AGA, New York.

Georges Seurat, La Seine a la Grande-Jatte, Musees royaux des Beaux-Arts,

Acknowledgments

Lattice designs reproduced from Daniel Sheets Dye , Chinese lattice designs

(Dover , New York , 1974).

Stone mason marks reproduced from Matila Ghyka , The geometry of art and life

(Dover , New York , 1977), and Charles Bouleau , Charpentes, La Geometrie

secrete des peintres (Editions du Seuil, Paris, 1963).

Tree silhouettes reproduced from Derrick Boatman , Fields and Lowlands

(Hodder & Stoughton, London , 1979), courtesy of the Rainbird Publishing Group .

xv

Visual Modeling with Logo

Chapter 1
Introduction

"Skill to do comes of doing."

Ralph Waldo Emerson

" Chance favors the prepared mind ."

Louis Pasteur

Who I hope you are

You might be interested in the

photography - or in architecture .

commercial , or industrial design .

studio arts - painting , drawing , sculpture ,

You may have had experience in graphic ,

Then again , you might be a liberal arts type

with a background in language , literature , music , or science . Or perhaps you are

a professional type educated in the field of business , law , medicine , or theology .

You could be a student or a teacher or neither or both .

You may have spent long hours in art studios and possess an exceptionally

rich , visual vocabulary . Then again , your graphic abilities , both verbal and

physical , may be very much on the thin side . Instead , your vocabulary might be

skewed toward logic and mathematical terms because your background is in the

sciences , philosophy , law , or mathematics . Perhaps you are that much sought

after , well -rounded person whose vocabulary is rich without being specialized .

Chapter 1

You may not be able to describe every phase that Picasso went through , but

you enjoy looking at art , and you can differentiate a Picasso from , say , a Pissarro

when you see them side by side . You probably have a favorite artist or a

favorite period , and you have paintings or reproductions of them in your own

home . While you may not be able to sketch the Acropolis using 3 - point

perspective , you do have some idea of what perspective means . You would be

intrigued by the suggestion that , in fact , there are dozens of different ways to

illustrate objects in space .

At some time in your past , you must have taken a course in geometry .

(Everybody has taken a course in geometry . It is one of the few bits of liberal

education that we still share .) What about trigonometry ? You may have

forgotten everything , but you aren ' t brought to the edge of coronary arrest by

hearing the words geometry and trigonometry .

Finally , and most important , whatever your curriculum vitae says , and

whatever type of intellectual or visual baggage you carry , I hope that you are

excited by looking at things and by thinking about how things look .

This book will show you how to increase this kind of excitement by encour -

aging you to build a special , visual variety of computer models . If you are

stimulated by this idea , then you are exactly who I hope you are .

Your computer baggage

This chapter gives a very quick summary of basic Logo . It is brief , not just because

I hope that you already know a little Logo but because I expect that you are

willing to use the manual that came with your copy of Logo . In other words , I

expect that you are willing to do some learning about Logo mechanics on your

own .

If you have never met Logo before , probably you have been introduced to

some other computer language and most likely this other language was BASIC .

(I am saddened to think of you learning BASIC before Logo , and this book will

2

Introduction

give you the chance to right that terrible wrong .) If you do know something

about one computer language, you should be able to plunge happily into the

manual of a second language - Logo. I will give you some directional help ,

though , by suggesting what questions you need answered in your manual . Then it

will be up to you to learn the specifics.

I assume, too, that you have played around with personal computers and

know how they "feel." You may like or dislike these machines, but your feelings

are based on personal experience. You are familiar with disks, disk drives , key-

boards, and program editors .

No baggage

3

If you have had no experience with personal computers , and have never tried to

learn acorn puter language - - on your own or in a course - - you may find this book

rough going . If , on the other hand , you have access to a teacher , tutor , or friend

who is willing to give you help when you ask for it - and if you are patient ,

curious , and tenacious - I think you should stick around .

Programming as craft

Learning to program in Logo is very much like learning a craft . You can read

about " doing Logo " as you can read about making furniture , and you can talk to

others about doing it as well . But in order to develop the individual talents and

skills needed for effective Logo or furniture craftsmanship , you must physically

do it yourself .

For the newcomer to a craft , a master artisan can certainly be of help . The

old timer can suggest small , beginning projects that are reasonably taxing but not

overly intimidating . And by offering encouragement , he can keep the novice ' s

spirits high .

This chapter is designed to reinitiate you into the excitement of Logo craft;

all the exercises within the chapter have been fashioned by an experienced

craftsman . These initial projects should be copied . All artisans begin learning

their craft by copying what others have done . This is not to deny their

creativity but rather to allow for a strengthening of the basic skills that support

individual creativity . Good craftsmanship , of course, requires both skill and

crea ti ve flair .

For my purposes, skills are as much frames of mind as forms of physical

dexterity . For example, in this chapter I will stress the usefulness of three such

skills : first , an ability to break down big problems into smaller problems; second,

a willingness to imagine yourself as "walking " shapes into existence; and third ,

a propensity to tinker with your Logo machinery . Very soon (starting with the

exercises at the end of this chapter, in fact) you will be asked to apply these

skills to support your own kind of invention .

Craft is about building things by hand, and that is what you will be doing

with Logo.

Copying computer programs is so widespread that I had better give you my

opinion about the usefulness of it all . In the previous paragraph I said that

copying was a good thing at the start of one 's apprenticeship . As you go through

this chapter , I hope you will want to try out my procedures . That 's OK . But if

you simply type my procedures into your computer , you will only reproduce what

I have done . And that will bore us both . The book shows what I have done ; it

doesn 't show what you can do . My procedures offer you a starting place , so that

you don 't have to build from zero . But it is up to you to go beyond that start .

So please do copy the ideas of any procedure that strike your fancy . But ,

once you have made those ideas work on the screen , play rough with them . Give

the copied procedure funny and outlandish arguments . (Very big or very small

4

Chapter 1

Copying and tinkering

Introduction

5

numbers could be outlandish , but what is a funny argument ?) What happens

then ? Does your copied procedure still work ? Can you explain how ? Go on to

make a few changes inside the body of the procedure ; change some of the com -

mands just a little . Can you guess what might happen before you experiment on

these changes ?

Get into the habit of tinkering , just a little . Whenever you write , or copy , a

nice procedure , make a few changes to it so that it does something else .

Equipment

Your most important piece of equipment is a notebook . It is far more important

than the computer you work on and all the technical manuals at your disposal .

Select a notebook with large , unlined , and bound - in pages . I want you to keep

track of your work in this notebook . That means everything : the little sketches ,

word portraits , diagrams , procedure listings , the printed images . Stick in any

magazine and newspaper illustrations that strike your fancy , whenever you find

them ; don ' t worry about organization . You will be mixing the good with the less

than good , the things that worked well with those that never will .

I suggest that a large format notebook is best . That means plenty of room for

a lot of stuff . Small notebooks encourage crabbed handwriting and get messy ; you

will need a lot of space . Also , unlined paper is better . Since there is no need to

write carefully , lines will get in the way . If you need graph paper for a careful

diagram , glue a piece in . And , finally , the bound - in pages will not let you

reorganize the book . The notebook may organize you .

Glue . Rubber cement is the Queen of Glues and the world ' s best notebook ad -

hesive . Get a lot of it . Be careful using this glue , though ; it is very flammable .

Don ' t smoke and glue at the same time .

Chapter 1

Dialects

Unfortunately , there is not just one Logo. While some Logos are more alike than

others, most have quirks . 1 I use Terrapin MacLogo throughout this book . All the

procedures have been written in this dialect using an Apple Macintosh Plus.

Most of the images were generated by Logo procedures and printed on an Apple

Imagewriter II printer . The rest were done by hand, mine .

You may have a different machine and a different Logo . To make life as

easy as possible, and to eliminate the need to talk about dialects, I have tried

hard to avoid using those components that vary most between Logos. The bad

news: this is a book about graphics and graphics is the area in which Logos

differ most . So I skirt any graphics razzle-dazzle that might work in one Logo

and not in another . I don 't use funny pen patterns , polygons filled with patterns

that look like brick walls or tile roofs, or automatic mirrors that reverse images.

There are no sprites or multiple turtles . The only colors I use are white , black,

and (very occasionally) a reversing pen color . All the line drawings have been

done with a standard , narrow -width pen.

Caveat emptor

6

This is a little late for a warning , but here it is anyway : This is not a book about

Logo. You will end up knowing a lot about Logo, and that is no bad thing . But the

goal of the book is to get you to build visual models, and Logo is only a means to

that end. God knows , we could have used Pascal. But it just so happens that Logo

is easier to learn and easier to use than most of the other languages that we

1. Appendix A in Brian Harvey 's Computer Science Logo Style, volume 1:
Intermediate Programming (Cambridge , MA : MIT Press, 1985), gives a nice
summary of the syntactic differences between Logos. It gives no help with
differences in graphics , though .

We will concentrate on the graphic parts of Logo . And that means " turtle

graphics." The intent of Logo's turtle metaphor was to inspire young children to

explore shapes. The turtle is a tiny triangle of light that is moved about the

screen via Logo commands . As the turtle moves, it leaves a trace of light .

Children are encouraged to imagine themselves in the turtle 's place and to draw

a shape by walking through it , as the turtle would walk through it .

Children have the necessary body knowledge to walk a circle, even though

they cannot express their circle drawing rules before walking them . Walking

the turtle around an invisible circle translates the body 's knowledge into word

commands: " I'm walking him forward a little bit , now I' ll turn him a little , I 'm

walking him forward a little bit , now I'll turn him a little . . . I 'll keep doing

this until until he's finished . Yes, that 's it ; I 'm back where I started ." Once

said, the words are available to be transformed into Logo commands.

Because adult bodies may be more spatially intuitive than children 's, your

turtle visualizations can be far more effective than a child 's. There is a problem

with adults , though ; they aren't used to playing imagination games as adults

and must be coaxed into it . Children are happy to play silly games; adults may

be embarrassed to try . I will be asking you , after all , to imagine yourself as an

electronic turtle . And what would that feel like , I mean physically ? Use your

turtle body and walk around a bit .

Don 't reject visualization and muscular thinking before you try it . What

was good enough for Uncle Albert should be good enough for you . Listen to what

he said: "The physical entities which seem to serve as elements in thought are

certain signs and more or less clear images which can be 'voluntarily ' reproduced

7

Introduction

could have selected. Logo notation is neat and tidy ; it looks nice on the page and

that encourages visual thinking . But most important , because Logo is so easy to

play around with , it won 't get in the way .

Turtles are us

Making

commands .

like the turtle to draw a square box located at the center of the screen (usually

Chapter 1

and combined . . . this combinatory play seems to be the essential feature of

productive thought . The above elements are, in my case, of the visual and some

of the muscular type ." - Albert Einstein

Turtle space

shapes

Suppose you wouldLet's draw a simple shape using turtle reference

8

Turtles live on your computer screen . Make sure you know the size of yours , since

different computer screens have different dimensions . Screen dimensions are

generally stated in vertical (the y -axis direction) and horizontal (the x -axis

direction) measurements . Pinpoint the x = 0 and y = 0 point on your screen .

The turtle can be moved about the screen using cartesian x-y coordinates or

turtle coordinates . Cartesian commands send the turtle to a specific xy position

on the screen , without regard to the turtle 's current position .

Various SET commands move the turtle through cartesian space . Review

them .

In the turtle reference system , all commands refer to the turtle 's current

position , not its final position . The turtle is moved forward , backward , turned

left or right in relation to where it is now .

Review the turtle reference commands : FD , BK , PU, PD, RT LT .

In the cartesian system , the destination is the important thing ; in the turtle

reference system , it 's the trip .

the origin of the xy coordinate system). Here are the three steps you would take:

First , you would clear the screen by typing CG (clear graphics). The turtle

now sits at 0,0 and faces straight up .

1. "OK turtle ? Go forward 50 steps and turn right by 90 degrees. That completes

Introduction

Second , you would think about the commands needed to walk the turtle

through the shape . Use the turtle metaphor .

the left side of the box."

2. "Now , go forward another SO steps and turn right by 90 degrees. That com-

pletes the top of the box."

3. "Go forward yet another 50 steps and turn right again by 90 degrees. That

completes the right side of the box."

4. "Go forward another 50 units and turn right 90 degrees. That completes the

bottom edge of the box."

That 's it . The turtle has walked around the four sides of a size 50 box,

arriving back to where it started . These prose commands would translate into

Logo as:

1. FD 50 RT 90

2. FD 50 RT 90

3. FD 50 RT 90

4. FD 50 RT 90

The third and last step would be to type these commands on the keyboard .

And here is what you will see.

9

Chapter 1

" 2-

J

4-

,

10

Great . This series of commands does indeed draw the square you wanted ; but

wasn 't it tedious to type in all that stuff ? The command FD 50 RT 90 was

typed four times . Surely there is a shorthand method to repeat this line four

times without typing four times . Review the REPEAT command ; it is exactly

w ha t we need here. Try it .

CG

REPEAT 4 [FD 50 RT 90]

Notice that the line REPEAT 4 [FD 50 RT 90] is a kind of operational

definition of what a square is : a square is four sides , four FD commands , with

each side joined at right angles to the next, the RT 90 commands . That 's tidy ,

but it 's still a bore to type two lines each time you want a size 50 box on the

screen . After all , you may want to draw 100 boxes .

Wouldn 't it be convenient to be able to " tell " Logo your definition of a

square and then to give that definition a name ?

Logo procedures group commands under a single name

You can group a series of Logo commands together under a single name by writing

a Logo procedure . The name of the procedure is a shorthand for all commands in-

defined

Introduction

cluded in it . Typing the name of the procedure tells Logo to automatically

execute each line of the procedure in turn , just as if you had typed them , one after

another , on the keyboard .

You can " tell " Logo your definition of a square by creating a procedure

called SQUARE. Logo will " remember " your definition until you either erase it or

turn off your computer .

Review the defining and editing procedures in your Logo manual .

Shapes . and drawn by procedures

Let 's get on with writing the necessary procedure . Here it is :

[FD 50 RT 90]

REPEAT 25 [PD BOX50 PU RT 15 FD 60 LT 15]

11

END

Logo will add BOXSO to all its other commands . Each time you type BOXSO, the

turtle will draw a square of size 50. The figure will be drawn at the turtle 's cur-

rent position on the screen . Unless you move the turtle to a different starting

point , each time you type BOXSO, the square produced will be on top of the

previously drawn figure . So move the turtle around to new positions and draw

some more boxes .

But you can certainly be more imaginative than that . Create an interesting

design on the screen using only the BOXSO procedure and move commands. If you

have a color screen, you might want to investigate the effects of changing the

screen's background color and the color of the pen. Keep track of what you are

doing in your notebook so that you can reconstruct your successful designs.

Here is a simple command that wraps boxes around the screen:

TO BOXSO
REPEAT 4

Here are two different images produced by that one -liner . How are they differ -

ent ? Is one image more pleasing than the other ? Why ?

Chapter 1

Wrapped boxes

12

Introduction

Generalizing procedures

Adding an argument to a procedure

Define a new box procedure that has a size argument . The value of the argument

will tell the box procedure how to go about its business of drawing boxes. Chang-

ing the value of the argument will change the size of the box. You can now draw

boxes of any size from , say, 1 unit to 5000 units . Use this example as a "pattern "

for incorporating an argument into a procedure.

TO BOX : EDGE

REPEAT 4 [FD :EDGE RT 90]

13

END

What about boxes of different sizes? You could edit the BOX5 0 procedure every

time you wanted it to draw a different size box. You could also define many BOX-

like procedures, each to draw a different size box. But that doesn't seem very ef-

ficient , does it ? After all , Logo itself doesn't have a different FD command for

every possible length of line that you might wish the turtle to draw .

There is not a FD- 1O command for drawing lines of length 10 and a FD- 43

command for drawing them 43 units long . Logo has a single FD command . When-

ever FD is used, an argument must be used in conjunction with it : the form is FD

argument . A single argument must be typed just after FD. For example, one could

type: FD 10 or FD 43. The value of the argument " tells" FD how to go about its

business of drawing straight lines. Isn't this convenient ? One command does a

variety of things . FD argument draws straight lines of any length . If we

change the value of the argument , the line length changes accordingly .

Let's generalize BOX5 0 in terms of box size as FD is general in terms of line

length .

Putting a demonsuation procedure together

Chapter 1

I am sure that by this time you have already designed some interesting patterns

with various BOX procedures. Some of these patterns you probably liked enough

to print and glue into your notebook. Remember to include a few written comments

on what you were trying to achieve.

Perhaps you would like to show off your designs. You could show your pals

the images in your notebook . But seeing an image is not the same as seeing how

the image is drawn , the order in which the pieces are visually assembled. How

would you go about demonstrating this? You could retype all the Logo commands

needed for your screen collage. What else could you do?

Remember that Logo procedures can group a series of commands together

under one name. So let 's define a new Logo procedure that will run all the

necessary steps to demonstrate your design. Once defined , you will only have to

type the demonstration procedure 's name to have your designs redrawn on the

screen. Your demonstration procedure will have no arguments; it will only do one

thing : generate a specific design that you want to show to your friends . If you

wish to show off with several designs, you could design specific Logo procedures

to reproduce each design.

Here is an example of such a demonstration procedure :

END

To see the pattern defined by DEMO, type it :

14

TO DEMO
; A demonstration procedure to show off a design
; produced from multiple boxes of different sizes .
REPEAT 4 [BOX 100 BOX 98 BOX 96 BOX 75 BOX 40

BOX 35 BOX 30 RT 90]

Funny feelings

Introduction

Do you have a funny feeling that this isn't enough, that we aren't producing

great enough images? Let's think about this for a while .

Drawing with Logo should not be the same as drawing with a pen or pencil .

What can be sketched quickly by hand is unbearably tedious to sketch with

Logo. You may have tried sketching with Logo by moving the turtle as you would

move your sketching hand . It doesn't satisfy , and it doesn't work . Logo is a

unique medium for visual expression; don 't expect it to , be like other media .

Visual modeling with Logo is as different from drawing as clay modeling is

different from photography . Our Logo media is a visual modeling media . We use

it best to build models . Why ? To encourage us to think about shapes. The

drawing is done to encourage thinking .

So don 't worry too much (now) about the final image. Don 't worry if your

designs aren't amazingly beautiful ; don 't be concerned if they aren't "arty ."

This isn't, after all , a book about computer "art ," but it might be useful to think

about ART for a minute . Here is a quote from a computer art type, Harold Cohen

from the University of California at San Diego: "For most people outside of art ,

15

Chapter 1

16

probably , art is directed primarily at the production of beautiful objects and

interesting images ; and who is to argue that a complicated Lissajou figure is less

beautiful than an Elsworth Kelly painting or a Jackson Pollock ; or that a

machine simulation of Mondrian is less interesting than the original it

plagiarizes ? To talk of beauty or of interest is to talk of taste , and matters of

taste cannot be argued with much profit . The fact is that art is not , and never

has been , concerned primarily with the making of beautiful or interesting

patterns . The real power , the real magic , which remains still in the hands of

the elite , rests not in the making of images , but in the conjuring of meaning ."

A little professorial , this . But do you think he has a point ?

Go back to your demonstration procedures , the ones that have no arguments

so they do only one thing . A procedure that does only one thing is like a box

drawing procedure that draws only one size of box . One box doesn 't encourage

much thinking about the nature of boxes , does it ? Can you use your demonstration

procedures to explore the nature of a collage that intrigues you ? Play around

with the collage demonstration procedure that draws it . Tinker a bit .

Maybe you could generalize the demonstration procedure by adding an

argument . To generalize a procedure is to stretch your thinking about what it

does ; and that 's our appropriate work , too , because it respects the uniqueness of

the Logo art medium . " It 's the tinkering that counts , not the artiness ." Pin that

phrase over your computer screen .

Generalizing a procedure with arguments

Let 's go back to that BOX procedure . Can we generalize it so that it draws

triangle " boxes " as well as square ones? While we are at it , let 's ask BOX to draw

boxes with any number of equal sides . These shapes will be regular polygons

with n sides . Why not call the generalized procedure NGON for n-sided polygon ?

Look again at the procedure BOX and decide what needs to be changed to turn

BOX into NGON.

Introduction

TO BOX :EDGE
REPEAT 4 [FD :EDGE RT 90]

END

plans that you might issue to the turtle to do NGONs.

7.
 ~ 2

\ A
~

.

 1 '1

- \

<.

!

TO NGON :N :EDGE
REPEAT :N [FD :EDGE RT 360/ :N]

17

END

You need to add a second argument : N. This will tell Logo how many sides

to draw. We can replace the REPEAT 4 with REPEAT: N. FD : EDGE will stay

the same, but what about the angle you want the turtle to turn before drawing

the next side? It surely will be different for different sided polygons.

Generally, sketching focuses geometric thinking . Here are some walking

How can you calculate the angle indicated by the "?" for any n-sided poly -

gon? Your geometric intuition should tell you that the turtle , after making : N

turns , will end up facing the same direction in which it started . The amount of

each individual turn will be 360 divided by the number of turns , or 360/ : N. (Now

is the time to recall Logo 's mathematical capacities. Review the Logo notation

to add , subtract , multiply , and divide .)

You are ready to write the new procedure NGON:

Chapter 1

Try it out . Notice that when : N becomes large , the drawn figure becomes a

circle (almost). Carry out some clever visual experiments with NGONs.

Some observations

Making the simple more complete

What next? How can we make these simple polygons more interesting ? Maybe

we can add another polygon characteristic to NGON.

Sometime in your life you were probably given an exercise like the follow -

ing . "Cut out some different sized squares from a sheet of colored paper and think

about placing the squares on a large piece of white paper . First , try to arrange

the squares so that your design feels unbalanced and looks wonky . Next ,

rearrange the squares to create a balanced design."

What kinds of changes did you make? What about creating an arrangement

that looks sad and another that looks euphoric ? Each design used the same

squares. What made them different ? Their placement .

Make NGON draw a bunch of NGONs and put them on the screen according to

some placement rule . Take out your notebook and doodle . Here are some results

from my doodling . Your approach will be different . I 'll explain mine , and I 'll

expect that your plans will go into your notebook.

18

Look back carefully at what we have done so far with procedure writing . We

started with a list of commands that drew a box of a single size. Next , we

grouped these commands into procedures that could draw boxes of several

different sizes. Next , we generalized the BOX procedure with an argument so

that it could draw boxes of any size. Finally , we produced a still more general

procedure , NGON, that can draw any regular , polygonal "box" - triangles ,

squares, pentagons, hexagons, and so on- of whatever size we wanted .

(r.G, -r-"JC::r SMA Ll . En-

Introduction

Sketches of spinning polygons that grow or shrink as they spin

- - _..~~ ~

/

l'

S I =iit C+-, p, ~ CrE

19

(s :e ..,.. "'('", ,.J (,.
~ l (,. G--c: 12.

Word description of sketched ideas

Chapter 1

90% shrinkage I would use : GROWTH = .9."

A procedure to spin polygons

Will SP INGON ever stop? Try it out .

20

" I want Logo to draw a series of polygons rotating around a common point , and I

want each successive polygon to get bigger, or maybe get smaller .

" I don 't know what angle to turn between one polygon and the next, so I 'll

include an argument called : ANGLE that I can vary , to see what happens.

"1 don 't know how big the growth should be between one polygon and the

next, so I 'll define another argument called : GROWTH. I 'll play with different

values of : GROWTH to see what looks best.

"How do I make : GROWTH work ? Growth can be of two sorts: growth by a

constant amount , or growth by a constant percentage. I 'll try the latter . That

means that if I want polygons to grow by 10%, I define : GROWTH to be 1.10. For a

TO SPINGON :N : EDGE :ANGLE : GROWTH
NGON :N : EDGE
RT :ANGLE

SPINGON :N (: EDGE* : GROWTH) :ANGLE : GROWTH
; Here is the recursion .

END

What is new here? First , there are more arguments than you have seen

before. Every time you use SPINGON, you must remember to type four numbers

after it . Second, this procedure is recursive : the last line in the S PI NGON

procedure asks that SPINGON be done again, but with some arguments changed.

For example, (: EDGE) becomes (: EDGE* : GROWTH) the first time recursion is

called; and then (: EDGE* : GROWTH) becomes (: EDGE* : GROWTH) * : GROWTH the

second time recursion is called. A recursive procedure is a procedure that uses

itself as one of its parts .

HOME CG REPEAT 3
SPINGON 4 120 0

Introduction

Some spingons

SPINGON 30 2 10 1. 02 95

. 95 50 RT 90][SPINGON 4 120 0
. 95 19

21

Chapter 1

Stopping recursive procedures

One last procedural writing point to review . Having put SPINGON into motion ,

how do you make it stop at a stage of your choosing? You need to have a way of

telling it how to stop . That 's another characteristic to include as an argument .

Look at the following modification to SPINGON. Review the conditional com-

mands in Logo. IF . . . [something] is such a conditional . Using the IF

phrase, everything becomes very tidy .

A note on the procedure presentation style used in this book

I have tried to make the presentation of procedures in this book as readable as

possible . Here are several of my presentation rules .

22

TO SPINGON : N : EDGE : ANGLE : GROWTH : TIMES

; Note the new argument above .

IF : TIMES < 1 [STOP]

; This is the conditional stopper .

NGON : N : EDGE

RT : ANGLE

SPINGON : N (: EDGE * : GROWTH) : ANGLE : GROWTH (: TIMES - l)

; Note the new argument above .

END

Boring logistics

Before ending this chapter , let me give you a few more items to review from your

Logo language manual . The topic that gives most students the most problems is

one of the most boring things to talk about : file maintenance . So I won ' t talk

about it . But please review how to save text material as files , how to retrieve

material from files , how to erase files , how to catalog files , and how to print

files . Do the same review for storing and retrieving graphics information .

Third , the body structuring rule . Procedures should be laid out nicely on the

page without too much information on anyone line . Long procedure statements

should be divided up between lines to make them more readable . The special

character " - " is used to indicate when a single Logo statement has been

continued from one line to the next . Here is an example . Notice that the Logo

material within the [repeat brackets] would have been difficult to read if the

long statement had not been divided into several short lines .

Introduction

RT :ANGLE

SPINGON : N (: EDGE* : GROWTH) :ANGLE : GROWTH (:TIMES- l)
; Note the new argument above .

END

0
0

t:r:1~
h
j~h

j~
~o
-C:jH

o-C:jH

: B : N

: A

130

: A

50

: B]

END

23

TO SQUIGGLE
REPEAT :N [

First, the many comments rule . I have included wordy explanations in some

of my procedures. These comments begin with the Logo command " ; " . There is, of

course, no need for you to include these comments in your own version of my proce-

dures. However , it is a good idea for you to put comments in your own procedures.

Second, the meaningful cluster rule . I often include extra parentheses to

group like elements into a cluster. This is useful , for example, when an argument

is composed of a collection of Logo material , but you want to see it as a single

cluster of information . Here is an example from this chapter. Notice the use of

comments, too.

TO SPINGON :N : EDGE :ANGLE : GROWTH : TIMES
; Note the new argument above .
IF : TIMES < 1 [STOP]
; This is the conditional stopper .
NGON : N : EDGE

-

-

-

-

The symbol " - " indicates, of course, that the return key should not be used

because the Logo statement continues. Consult your ov-m Logo manual for handling

the problem of procedure layout .

Chapter 1

Exercises

Exercise 1.1

Make NGON more versatile by doing two things to it . First, improve NGON so that

it will draw polygons around a central point; and second, improve NGON so that

it can be given an argument that specifies not the length of an edge of the

polygon but the radius of the polygon. I' ve made up the term radius of a polygon .

It is the radius of the smallest circle that just encloses a regular polygon . The

center of this circle is the point around which the polygon is to be drawn . See the

diagram below .

~

R lS ~ t>\ ~ S 0 ;:: 1' ~ l...vG-l.?, J

t
. " " ' 0

. fr..o
. ' . " . '

.J,
.

. . .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

' " . .

. '

Call the revised procedure CNGON for " entered NGON./I

24

There are five exercises to explore before going on to the material of chapter 2.

The first is so important that we will go through it together , step by step. You

can work on the other exercises by yourself .

Diagram A: Getting read~ to draw the ~ol~gon.

Introduction

Two hints : First , ask yourself what arguments CNGON will need. This is

another way to ask yourself what information must be given to CNGON so that it

can go about its business of drawing centered NGONs. CNGON needs only two pieces

of information , or two arguments: the number of sides of the polygon to be drawn

and the radius of that polygon . That means that the first line of the new

procedure will look like this :

CNGON :N :RAD

Second, imagine yourself as the turtle . How would you walk through the design

that CNGON must make? Draw a simple diagram to describe such a " turtle

walk ." You might want to divide the diagram up into individual scenes. Later

you can translate each scene in words and then into Logo notation . Here is the

first instance where this turtle visualization is really needed. Let yourself go;

talk out loud ; get on with it without too much thinking .

Word description of the turtle walk (see sketches on next page)

You, as the turtle , begin your journey from position (1), the center of the proposed

polygon . You are facing straight up .

Pick up your pen and move forward by the amount of the polygon 's radius .

This is : RAD. This puts you in position (2).

You now need to turn right by an amount that is labeled (angle) on the

sketch (3). What will (angle) be related to? Will (angle) be different for

differently shaped polygons , that is, polygons with different numbers of sides?

Yes. Will (angle) be related to the overall size of polygons ? No . Don 't worry

about how to calculate (angle), yet; you can work that out later .

25

Turtle walk sketches

Chapter 1

.

.

: (3)
.

.

.

.

.

.

.

.

~ A \) II .I.~ :
.

.

.

.

.

e

A ::B

 t
t

:~ (+)
. ~) AIIJ6-tE ~

.

(b)

~ c..~)

,])c

26

Diagram C: Getting read~ to return to the center.

Diagram D: Returning to the center of the ~ol~gon.

Introduction

You are at position (6). You must now turn left by the amount of (angle); this is

indicated by (7). This leaves you in position (8), pointing straight up .

Pick up your pen and back down, by an amount equal to : RAD, to the polygon's

center. Finally, put your pen down in preparation for whatever might come next.

Note that you, as the turtle, have ended in the same position (9) as you began

(1).

27

After turning right by the amount of (angle), you are looking along one of

the polygon 's edges (4).

Put down the pen in preparation for drawing the polygon .

Diagram B: Drawing the I2o1~gon.

You are at position (4) and ready to draw an n-sided polygon . You can use the

procedure NGON. But what arguments will you use? It needs some values for : N

and : EDGE. Right?

Yes , but wait a minute . What should the value for : EDGE be ? You know the

value of : N, the number ')f sides of the polygon . And you know the value of the

new argument , : RAD. What must the polygon 's edge dimension be so that, after

it is drawn , it has a radius equal to : RAD? In other words , we need to be able to

express : EDGE in terms of : Nand : RAD. OK. We know the problem , what we

have to work on, but let 's not stop yet . Label the edge thing that must be

calculated (edge). We will return to it in a minute .

Now you can draw an NGON : N (edge).

You began the NGON from position (4). You will end at the same place.

Chapter 1

A turtle walk transfonned into a Logo procedure (almost)

No more words are necessary. Here it is.

The procedure is sketched. And we know what we know and what we don't. The

two amounts, (angle) and (edge), are still unknown . To figure these bits will re-

quire a little geometry and trigonometry . We might as well use this opportunity

to review all the bits and pieces of polygons .

The Geometry of CNGONs

with the word and equationUse the following two diagrams in conjunction

descriptions .

 ,

.

.

.

/' :: ! ~ d.-
e ~~ /2.

- 6 ~\ :/ - " :
\ .

e/ 2. ' : . ..\ , . . .
. . ., ' . 'f . . .

6. , ' 2.

.-...-. ~ \ . .'t.
. . '

- " . " , - . . ' D
. ' . . ' . . Iv

- - . .

, .

. - -
, .

, .

, .

- . .

. .

. .

. - .

. .

- . .

. .
. .

. . .

. ,

. ,

. . .
- .

' .

.

-

,

,

k
:
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . '

." " ,., D.,
~ :~ o..., ~~

. . . . '

' . . . '

" ' , .

. v
' . . . '

. \"'..*.' ..' 7'Q.. .' ' .. .tIt' ~
. r " ~ .

. ' - - ' .

. .

, IJ.., '
. .

. .

. .

. .

. ' .
. .

. .

. .

. .

" " ...

c.1
28

TO CNGON :N :RAD
PU FD : RAD
RT (angle) PD
NGON :N (edge)
LT (angle)
PU BK :RAD PD

END

The first problem we face is to find an expression for angle d in terms of n ,

the number of sides of the polygon . The second problem is to find an expression

for the length of a polygon 's edge , e, in terms of its radius , R, and n, the number of

sides .

In preparation for these two acts , let 's look at all the angles associated

with polygons . The central angles, labeled a, are easy . They are each equal to

360/ n . The external angles, labeled c, are also equal to 360 / n . The external angle

is the turning angle used in NGON. What about the internal angles , labeled b . We

need some work here :

Introduction

(1) c = 360jn,

(2) c + b = 180.

29

Putting (7) and (6) together and solving for e gives

:? Draw some diagramsarctangent

on the inside cover of your notebook.

geometryInstalling

Chapter 1

(8) e = 2*R*sin (180/ n) <---Second l2roblern solved.

Review the following trig functions : sine , cosine , and tangent . What is an

to explain each of these functions . Glue them

into CNGONthe necessary

Here's how far we have gotten with CNGON:

Now we can replace (angle) and (edge) with the needed expressions .

Here is the finished CNGON:

30

TO CNGON :N :RAD
PU FD :RAD
RT (angle) PD
NGON :N (edge)
LT (angle)
PU BK : RAD PD

END

TO CNGON :N :RAD
PU FD : RAD
RT 180 - (90* (: N- 2) / : N) PD
NGON :N (2* :RAD* SIN (180 / :N
LT 180 - (90* (:N- 2) / :N)
PU BK :RAD PD

END

Introduction

31

Lessons and tips

When solving visual problems , like this CNGON thing , try to break the single big

problem down into several smaller problems . Solve each of the small problems

in turn , and then plug the little solutions together to form one big solution .

Exercise 1 . 2

Put together one or more DEMO procedures that make imaginative use of the

ideas presented and reviewed in this chapter . Modify every procedure in the

chapter . Make them act more strangely .

You might want to think some more about the exercise , described above , of

placing simple shapes on a blank field of paper to depict different feelings of

balance or emotions . A painting by the Russian artist Kasimir Malevich is

reproduced below . What could be more elegant that these eight red rectangles ?

(That ' s the title , by the way .) What emotion do you feel when looking at this

little reproduction ? Can you do something similar ?

Chapter 1

Exercise 1.3

Combine the ideas of SPINGON with your newly constructed CNGON.

Exercise 1.4

Design a fancier CNGON that fills up a polygon with textures. Here are a few

visual tips for Exercises 1.3 and 1.4:

32

6. Translate the words into Logo commands .

Introduction

Exercise 1.5

1. Imagine yourself as the turtle .

research .

7. Test it out with realistic and totally outlandish argument values.

33

Design a Logo procedure that puts polygons on the vertices of other polygons .

Hint : look carefully at the body of CNGON. When does the turtle arrive at a

polygon vertex ? Mark the vertex arrival place in the CNGON procedure . You

might consider this location as the right spot to install some recursion : when the

turtle arrives at any vertex, ask it to do another CNGON centered on that vertex .

This recursive drawing will place polygons on the vertices of polygons on the

vertices of polygons . You will need to figure out a way of stopping the recursion

machinery , or it will continue forever . Define a new argument , : LEVEL, to keep

track of recursion levels. What about the relative sizes of the polygons ? Should

they get bigger or smaller? Can you handle that?

Don 't forget the following tricks :

2. Sketch the design that the turtle must walk through .

3. Describe the turtle walk in words .

4. Divide the walk up into logical sections .

5. Note the bits you know and the bits that will need some further thought and

Chapter 2
Visual Modeling

Models

Most physical models are miniatures , smaller versions of something else. Model

railroad engines are good examples , and many of us have had pleasant

experiences with them. They can be picked up and looked at from any angle, and

they can be experimented with , too. How many wagons , for example, can a

model locomotive pull ? Attach 10 wagons and see if the locomotive can pull

them . And if you should sit beneath a model railway bridge when the tiny

engine rolls across it , pulling all those wagons, what will the sound be like ?

Will it be like the real thing ? Listen carefully and you will experience a double

thrill : an excitement that comes from using a model to hear how a full -sized

locomotive might sound; an excitement that comes from simply playing , on your

own terms, with a miniaturized piece of the world .

" In the case of miniatures , in contrast to what happens when we try to

understand an object or living creature of real dimensions , knowledge of the

whole precedes knowledge of the parts . And even if this is an illusion , the point

of the procedure is to create or sustain the illusion , which gratifies the

intelligence and gives rise to a sense of pleasure which can already be called

a es the tic ."

Claude Levi -Strauss, The Savage Mind

Visual Modeling

35

I believe that this kind of play , because it encourages us to look more

closely at our world , is very useful enjoyment . In addition , I am convinced that

the clarity of vision developed by such play is best pursued by involving

ourselves , not in just the manipulation of models but in their design and

construction as well .

This book is about a special kind of modeling that explores patterns and

visual images . Sometimes we will create designs using visual models of

machines that are very much from the real world . Other times , images will be

produced by more abstract or imaginary machinery . All our models though ,

whatever they represent , will be constructed from Logo procedures . Logo is the

raw material , but this book is not about Logo . In fact , you must try hard not to let

Logo get in the way of your model building craft . Models first . OK ?

OK . No more introduction . Let ' s build an image - producing machine using

Logo . But first . . .

An important pause in the narrative

What comes next requires that you have a fair understanding of the Logo

language . But what , you ask , does fair mean ? If you haven ' t yet looked at the

material in Chapter 1 , now is the time . Chapter 1 will let you compare your

current knowledge of Logo mechanics with what you will need to build the

visual model described in the next section . Don ' t just scan Chapter 1 ; go through

the examples in the text , and try out the exercises at the chapter ' s end .

Even if you already know some Logo , a review probably would be helpful .

Chapter 1 describes much of the geometry and trigonometry used throughout the

book , so now is a good time to review that material . Try to apply some geometry

to a few of my exercises . In addition , Chapter 1 will introduce you to my Logo -

talking style ; maybe you should get used to that style right away . Be sure to

spend some time working on the centered polygon assignment . This exercise com -

bines a review of Logo , the introduction of turtle walks , and simple geometry .

Chapter 2

Go back and take at peek at Chapter 1 right now . Have a good read and

take your time with it . If you are a real Logo high -flier , test your flair by doing

the exercises at the end of Chapter I , before you glance through the hints given

there. After having a go at these problems, compare your Logo style with mine .

On to modeling

I have decided to begin this work with something concrete , something selected

from the world of things . We can do some abstract modeling of ideas or emotions

later on . The example that follows is a description of a device that I vaguely

remember seeing described in an old Scientific American magazine . I 've called it

a pipe - and -roller machine . I never built the thing , but I always wanted to see

how it worked .

Pipes and rollers

Imagine that we are wandering about a construction site where there are useful

bits and pieces lying about , free for the taking . While this wandering will be

done only in our minds , the images seen there are based on impressions from past,

real excursions.

We will need some short sections of plastic pipe , the kind used for

plumbing . Try to find as many different -diametered pipes as you can. Here is a

sketch of what you might have picked up so far.

36

Assemblin

Visual Modeling

Next , let 's assemble a collection of wooden dowels of various diameters ,

from very small diameters to very large ones . Dowels , or rounded wooden pegs ,

are used to join together adjacent parts by fitting tightly into two corresponding

holes . Dowels are used by cabinetmakers to assemble fine pieces of furniture

when nails or screws would be unsightly ; and large dowel -pegs are still used to

fit together wooden beams when aesthetics are more important than cost . Call

the dowels that you have assembled " rollers " ; you will see why in just a minute .

Here is a sketch of my dowel collection . (Sketches are models , too .)

19 the pipe -and-roller machine

Now , imagine that one section of pipe is floating in the air at eye level ; one end

of the pipe is clearly visible to us, and the pipe 's length is parallel to the

37

Next , imagine rolling the dowel around the circumference of the pipe until

it arrives back at its starting position at the top of the pipe . You will have to

hold the roller very carefully so that it doesn't slip on the pipe but rolls nicely

in contact with the pipe . If you roll the dowel around the pipe in a

counterclockwise direction , the dowel will also turn counterclockwise .

The dowel would turn in a clockwise direction if the rolling -about -the- pipe was

also in a clockwise direction . Note the two motions of the roller : the roller goes

around the pipe as it turns around it own center . The two centers , the center of the

pipe and the center of the roller , will feature in all our calculations .

Chapter 2

ground . Now , hold one of the dowel -rollers parallel to the length of the pipe

and place it on top of the pipe .

- ' -

38

" ' , . . "

Visual Modeling

Now that you have an image of the physical machine in your mind 's eye, I

can ask you to begin manipulating the parts of the image. Imagine playing with

this model in your mind . What will the roller " look like " as it rolls around the

pipe ? Can you draw a picture of it ? Or better still , can you create a Logo model of

this roller / pipe machine that can illustrate the motions for us?

Imagine , for example, that we glue an arrow onto the end of the roller .

Roller talk

At first glance , this exercise looks pretty difficult .! certainly more complicated

than the centered polygon problem discussed in Chapter 1. But , if we could just

break this problem down into smaller , more manageable parts , as we broke the

polygon problem down , some of the complexity might vanish . So let 's set about

doing just that .

First , we can talk about the geometry of rolling cylinders to see what we

already know . Then , we can do a turtle -walk scenario - with sketches and

words . Finally , Logo will act as the glue to stick all the individual parts

together .

39

What pattern will the tip of this arrow trace out as the roller moves

around the pipe ? Imagine a series of photographs taken at regular intervals as

the roller moves around the pipe . Let's construct a Logo machine that will work

in this photographic way . In other words , let 's build a Logo machine to model

the physical pipe -and-roller events visually .

Chapter 2

Look at the figure on the left below . We see the roller at the top of the

pipe , position (a), and then rolled counterclockwise around the pipe to position

(b). How much has the roller turned between points (a) and (b)? The dark bands

in the figure indicate the contact surfaces between the roller and the pipe . If

there is no slipping , the length of the band on the roller must equal the length of

the band of the pipe . Why ?

a -

(b)(.

40

We could think of this rolling in another way . See the figure on the right

above. Imagine that the roller stays fixed at position (a). The roller now rotates

at (a) while the pipe is rotated- clock wise- underneath it from (b) to (a). In

this alternative view , the roller also turns in a counterclockwise manner, by the

distance indicated by the dark band . Here, as in the figure on the left , the

length of the band on the pipe must equal the length of the band on the roller .

How can we calculate the lengths of these bands? First, note that the bands

can be described as segments of a circle , that is, some fraction of the total

circumference of a circle . Well , what do we know about circumferences ? Any

circle 's circumference , C, equals 2nR, where R is the radius of the circle . Now

look a t the figure on the next page.

Visual Modeling

 (a.)

- ' - -

41

The band on the pipe is some fraction of the circumference of the pipe . This

fraction is the angle 8 (theta) , measured in degrees , divided by 360 , the total

number of degrees in a circle . The length of the band on the pipe is , therefore ,

27tRp8 / 360 , where Rp is the radius of the pipe . The same thinking provides the

length of the band on the roller : 27tRr4 > / 360 . Here , Rr is the radius of the roller .

What next ? We can set these two expressions equal to each other , since the

physical dimensions they represent are equal to each other in length . Then we

can rearrange terms to express <I> (phi) , the degree rotation of the roller , in terms

of 8 , the degree distance between (a) and (b) . Here it is :

CP = 8Rp / Rr

This rotation expression is very convenient . If we know how many times we want

to photograph the roller on its way around the pipe , we can calculate 8 , the

degree distance between stoppings , by dividing 360 by the number of stoppings .

And knowing the radius of the pipe and of the roller , we can use the tidy

expression above to calculate <P , the relative rotation of the roller from one

stopping point to the next .

So much for the roller talk . But before we go on to the turtle walk , will you

admit that you know more about this problem than you thought you knew at the

outset ? Listen : breaking big problems down into smaller ones makes getting

Remember that a turtle -walk scenario describes in words and sketches how you

want the turtle to walk through a design . Let yourself go, but be specific .

Addressing your instructions to the turtle and talking out loud may be helpful .

Let's use the sketches on the next page as the focal point of this scenario. I have

divided my turtle walk into small scenes and have given each a letter

designa tion .

The previous shapes in this section were drawn with Logo procedures, but I

have intentionally left the following figures in freehand form ; they are taken

from my own Logo notebook . I wanted to remind you that sketches come before

Logo procedures that draw rounder circles. The following sketches record my

visual doodling about this particular problem . But to appreciate the usefulness

of sketches, you must do some yourself . Don 't just look at my examples.

Because sketches can be effective visual aids for careful thinking , they

need to be drawn carefully . I occasionally use rulers and a compass, but not

always . Of course, the small diagrams on the next page are final sketches, not

beginning ones. Final drawings , like final Logo procedures , are the results of

many preliminary studies, many of which did not "work out properly ."

Begin at position (1) facing straight up. Draw a circle around point (1) with

radius Rp. This will be easy to do using CNGON. (This procedure is listed below,

but see Chapter 1 for a full description of it . Think of it as a black-box procedure

Chapter 2

A turtle walk around the pipe

Word description of the turtle walk

Diagram A: Qrawing the ~i~e

42

started easier. And once you get started moving in any direction , you will

discover that you are already familiar with much of the scenery.

Visual Modeling

Turtle -walk sketches of the roller -pipe machine

.'-
'

J>
"

.
,

'
.

'
,

.
.

.
.

,
.

.
.

,

.
.

,
'

,
,

.

"
.

,
~

'
D
>

.

.
.:

.
.

.
.

.
'

"
.

'
"

'
"

"
'

,

I
"

"
\
..

..
"

.
~

'

-
"

v
,

,
-

,

'
-
..

/
.

.
"

-
'

.
.

,
"

,
,

.
,

.
.

'
E.

F.

q
G.

D.
H.

43

G

J
e

ld
E

4~

(

.U
M

E
lp

a
q

P
ln

o
M

u
o

~
A

lo
d

a
1
l1

q
J
rq

M

p
u
n

O
lE

J
J
1
U

3
:J

 a
1
l1

s
a

u

!J
a
p

U
O

!
1

!
s
o
d

1
U

a
lln

J

s
.a

N
lm

a
ll1

-
.
0
9

S
n

!
p
E

l
J
o

-
u
O

~
A

lo
d

p
a
p

!
s

-
o
z

:
E

-
a
IJ

l
!

J

E

M
E

lp

P
ln

o
M

0
9

O
Z

N

O
~

N
:
)

:a
ld

w
E

x
a

la
d

.u
O

~
A

lo
d

a
1
l1

s
a
q

!
lJ

S
W

n
J
l

!
J

1
E

1
l1

a
IJ

l
!
J

a
1

l1

J
o

S
n

!
p
E

l
a
1
l1

'

a
v

~

P
U

E

'
U

M
E

lP

a
q

0
1

U
O

~
A

lo
d

a
1
l1

J
o

s
a
p

!
s

J
o

la
q
w

n
u

a
1
l1

'
N

:

s
1
u
a
w

n
~

lE

O
M

}
S

a
)
{

E
1

N
O

~
N

:
)

1
U

!
o
d

IE
l

:J
u
a
J

E

p
u
n
o
lE

s
u
o

~
A

lo
d

lE
ln

~
a
l

S
M

E
lp

1
E

1
l1

a
a

!
a

a
4

~

J
D

a
D

~

a
4

~

liD

liD
!
1

!
S

D
a

~
S

l
!J

S

~
!

li
!

la
n
D

l
a
4

~

~
U

!
M

E
la

:
g

W
E

l2
E

!
O

'

la
n
O

l
a

1
.I

~

a
~

t?
l

~
s
n

ln

o

~

(
Z

)
u
o

!
~

!
s
o
d

u
o

p
a
la

~
U

a
;)

l

~

S
n

!
p
t

?
l

J
O

a
p
l

!
;)

t?

M

t
?
lp

M

o
N

,l

~

+

d
~

S

!
a

;)
u

t
?
~

s
!

P

S

!
1.

I.
L

'l
a
llo

l
a
1

.I
~

J
o

la
~

U
a

;)

a
1

.I
~

I

(
Z

)
u
o

!
~

!
s
o
d

o
~

a
A

O
W

p
u
t

?

d
n

u
a
d

a
1

.I
~

~

;)
!

d

'
~

x
a

N

M
O

lle

a
l

{
~

~

U
!
M

e
lp

lO

]
U

O
!
~

e
le

a
a
la

U

!
la

llo
l

a
l

{
~

~

U
!
~

U
a

!
lO

::

)
ru

e
l

'
J
e

!
G

'

p
a
l

{
S

!
U

!
J

a
le

n

O
A

u

a
l

{
M

U

O
!

1
!

s
o

d

S
!

l
{

1

0
1

~

J
e

q

~
a

2

p
u
e

(
Z

)
U

O
!

1
!

s
o
d

u
rO

lJ

2
u

!
1
le

~
S

M

O
llE

a
l

{
1

M
e
lO

'2

u
!

J
e

J

a
le

n

O
A

l

{
J

!
l

{
M

U

!
U

O
!

1
J
a

l
!
p

a
l

{
1

S
!

1
e
l

{
1

p
u
e

'
d
n

1
l

{
2

!
e
l1

S

2
U

!
1
U

!
o
d

U
M

e
lp

a

q

u
e

J

M
O

lle

a
l

{
1

'
a

J
u

a
H

'2

U
!

II
O

l

A
u
e

a
u
o
p

~
Iu

s
e
l

{
1

!
'
U

O
!

1
!

s
o
d

2
u

!
1
le

1
S

a
l

{
1

u
rO

lJ

p
a

A
o

u
r

1
a

A

1
0

U

s
e

ll
la

II
o

l
a

l
{

1

a
J
u

!
s

.

Ia
rr

.I

a

ll
}

}
O

U

o
!
}

!
s
o

a

~
u

!
a

a
o

~
s

}
x
a

u

a
ll

}
O

}
2

u
!
}

}
a

~

:H

ru
e

.I
2

e
!

Q

.

(
1

)
u
o

!
}

!
s
o
d

'
a

d
!

d

a
t

{
}

J
o

.I

a
}

u
a

J

a
t

{
}

O
}

)
{

J
e

q

a
i

\
o

ru

p
u

e

u
a

d

a
t

{
}

d
n

)
{

J
!

d

a
a

!
a

a

ll
}

J
o

.I

a
}

u
a

J

a
ll

}
O

}
)
{

J
e

q

~
u

!
}

~
a

~

:Q

ru
e

.I
2

e
!

Q

l
~

u
n

O
U

le

U
O

!
~

e
~

O
l

d
q

~

d
~

e
lr
o

le
;)

o

~

~
u

n
o

;)
;)

e

O
~

U
!

d
)
{

e
~

n

O
A

~

S
n

U
l

~
e

q
M

.~

!
J
o

~

J
d

I
d

q
~

O

~

~
U

n
O

U
le

d

U
lO

S

p
d

U
ln

~

d
q

II

!
M

~

I
.

(

)
o

~

(
1

)
:d

U
!

I
d

q
~

s
e

U

O
!

~
;)

d
l

!
P

a

lli
e

S

d
q

~

U
!

~
u

!
o

d

ld
2
u
o
I

O
U

II

!
M

M

O
lle

d

q
~

'

(
Z

)
~

e

u
o

!
~

!
s
o

d

2
U

!
~

le
~

S

S
~

!
J
o

~

J
d

I
d

q
~

o

~

~
!

q

e

P
d

llo
l

M
O

U

s
e

ll
ld

II
O

l
d

q
~

d

S
n

e
;)

d
H

.M

O
lle

d

q
~

2

U
!

M
e

lp

d
lO

J
d

q

ld
II

o
l

d
q

~

~
U

d
!
lO

A

I
~

;)
d

llO
;)

~

s
n

U
l

n
o

A

(

)
~

u
!

o
d

~

V

.
(

)

U
O

!
1

!
s
o

d

o
~

p

le
M

lo
J

0
2

p

u
e

'

e

d
I2

u
e

A

q

~
J
d

I
U

ln
l

.

1
1

1
1

Orienting the roller and drawing the arrow

Visual Modeling

Diagram F:

Diagram G: Getting back to the center of the 12i12e

Turn right by 4>, pick up the pen, and move back down to (1).

Diagram H: Pre~aring for the next roller sto~~ing ~osition

45

The roller has moved from position (2) to position (3) by rotating about its own

center. We used the symbol <I> to indicate this rotation . The angle <I> is measured

relative to the dotted line linking the centers of the pipe and roller : (1) to (3).

You have arrived at position (3), pointing along the axis (1) to (3). If you

now turn left by angle <I> = 8Rp/ Rr, you will be facing in the correct direction to

draw the arrow . Draw the roller circle, too.

Get ready to draw the next roller image : turn left by angle 8 and move out to

position (4) . The roller rotation angle at the point (4) is again measured relative

to the dotted line linking points (1) to (4) . Why ?

Angle cj> at position (4) equals 28Rp / Rr Why 28 ? Because cj> must be cal -

culated relative to the starting position , and the roller has moved 28 degrees

from the starting position (2) . Turtle : you may now turn left by cj>, draw the

arrow , turn right by cj>, and go back down to the center of the pipe .

Angle cj> at the next stopping position (5) is not shown in the diagrams . But it

will be 38Rp / Rr Why ? Ora w a few diagrams to convince yourself of all this . Go

back and look at the figures on page 40 for some help .

A turtle walk transfonned into Logo procedures

To start , recall that we have to glue an arrow onto the face of the roller . So let ' s

write a procedure to draw an arrow of any shaft length : L .

Let 's call the procedure that will carry out this turtle walk P IPEGON . What

will be the arguments ? Certainly the radius of the pipe and the radius of the

roller will be needed . We will also need to know e and how many stopping points

we would like to photograph . Here is the list of arguments so far :

stopping places

Chapter 2

SHAFT

:L . The length of

PIPEGONs

: RP, the radius of the pipe
: RR, the radius of the roller

: THETA, the angle distance between
: N, the number of stopping places

Let's add one more, : CUM, that will keep track of the total of the angle

turned from the starting roller position . We can now write the first line of

PIPEGON:

TO PIPEGON : RP : RR : THETA : CUM : N

46

TO ARROW : L

; To draw a simple arrow of shaft length

; each tip is given by . 2 * : L .

; PD FD : L

LT 140 FD . 2 * : L BK . 2 * : L

RT 280 FD . 2 * : L BK . 2 * : L

LT 140 BK : L

PU

END

Supporting procedures

Visual Modeling

How do you feel about rushing right into doing the rest ? The following is

not my first " rush " or even the second . My first few attempts had bugs in them ,

and they didn 't work as I had planned . But procedures almost never work the

first time . That 's OK as long as your energy is up to fixing them .

TO PIPEGON :RP :RR :THETA :CUM :N

PU BK :RP + :RR
LT :THETA
PIPEGON :RP :RR :THETA

END
(: CUM+ : THETA) (:N- l)

TO

.

,

.

,

.

,

.

,

47

IF :N < 1
PU FD :RP

[CNGON 20
+ :RR PD

:RP STOP]

TO NGON : N

; To draw

; drawn from

; is given by

REPEAT : N [FD

END

Some pip . egon productions

LT : CUM* : RP/ : RR
ARROW :RR* 1 . 5
CNGON 20 : RR
RT =CUM* =RP/ =RR

CNGON : N : RAD

To draw an N - sided polygon centered on the turtle ' s

current position . RAD is the radius of the circle that

would pass through all of the polygon ' s vertices .

See Chapter 1 for a full description of CNGON .

PU FD : RAD

RT 180 - (90 * (: N - 2) / : N) PD

NGON : N (2 * : RAD * SIN (180 / : N

LT 180 - (90 * (: N - 2) / : N)

PU BK : RAD PD

END

: EDGE

an N - sided polygon . The first edge will be

the turtle ' s current position , and its length

EDGE .

: EDGE RT 360 / : N]

I typed PIPEGON 60 30 60 0 6 . This models , in a visual way , the rolling of a

roller of radius 30 around the circumference of a 60 radius pipe . The roller stops

along the circumference every 60 degrees, and 6 rollers will be drawn . The argu-

ment : CUM is given an initial value of o. What is : CUM being used for ? What

happens if you begin with some other value, say 43.5?

Chapter 2

~

One last point .

doing anything else.

Exploring P IPEGON dynamics

One of the pleasures of modeling is playing with the little model you have

48

In my turtle-walk scenario I drew the pipe circle before

The procedure P IPEGON draws it last. Why did I change

the order of things? Well , I wanted to use recursion and to be able to specify the

number of times recursion would happen. I used the argument : N to take care of

this. PIPEGON's first line looks at the current value of :N; when :N"becomes zero,

PIPEGON should be stopped . It is easier to know when a procedure should be

stopped than when it has just begun, and this seemed a nice place to draw the

pipe , after all the rollers had been drawn . Could you reorganize the procedure to

draw the pipe before drawing any of the rollers ?

Visual Modeling

But I don 't like all those circles. So I removed PIPEGON's third line . Here is the

new version . The asterisks (* * *) mark where the line was removed from the

new name

line removed< - - -

PU BK : RP + : RR
LT : THETA

A . PIPEGON : RP : RR : THETA (: CUM+ : THETA)
END

(:N- l) < - - - new name

49

IF :N < 1 [CNGON 20 :RP STOP]
PU FD :RP + :RR PD
LT :CUM* :RP/ :RR
ARROW:RR* 1. 5
(* * *)

RT :CUM* :RP/ :RR

built . Let 's fiddle with PIPEGON's parts to see what happens . I will show you

only a few things to give you the idea. Let's start with some different argument

values .

Here is the portrait of PIP EGaN 60 30 2 0 180 .

original version of the procedure . Don 't type them, though .

TO A .PIPEGON :RP :RR : THETA : CUM :N
; Arrow - only pipegon

Chapter 2

Now this is a portrait of A . PIPEGON 60 30 2 0 180 .

50

Instead of drawing an arrow on the roller , let 's draw a stripe along a

diameter . We can use CNGON to draw a two-sided polygon with radius equal to

the roller . We take out the ARROW procedure and insert CNGON. Here it is:

TO S . PIPEGON : RP : RR : THETA : COM : N < - - - new name

; .s..triped pipegon

IF : N < 1 [CNGON 20 : RP STOP]

PO FD : RP + : RR PD

LT : COM * : RP / : RR

(* * *) < - - - ARROW removed

CNGON 2 : RR < - - - 2 - sided CNGON installed here

RT : COM * : RP / : RR

PO BK : RP + : RR

LT : THETA

S . PIPEGON : RP : RR : THETA (: COM + : THETA) (: N - l) < - - - new name

END

Visual

And here is a portrait of s . PIPEGON 60 30 2 0 180 .

: THETA

Modeling

Call the extension L . PIPEGON .

TO L . PIPEGON : RP : RR : L : THETA : CUM : N

IF : N < 1 [CNGON 20 : RP STOP]

PU FD : RP + : RR

LT : CUM * : RP / : RR

FLASH : L

(* * *)

RT : CUM * : RP / : RR

PU BK : RP + : RR

LT : THETA

L . PIPEGON : RP

<- - - new name and arg

< - - -

< - - -

: RR : L (: CUM+ : THETA) (: N - l)

new name and arg
END

51

PD

< - - -

Now , imagine an invisible arrow glued to the front of the roller . At the tip ,

there is a flashing light . Here is the new part to fit into our P IPEGON machine:

TO FLASH : L

; Flashes a light at distance : L from the starting point ,
; and returns the turtle to where it started .
PU FD : L PD
REPEAT 6 [FD 2 BK 2 RT 60]
PU BK : L PD

END

To install FLASH into PIPEGON, we could fix a value for : L, perhaps based

on the value for : RR. Or we could extend PIPEGON by adding another argument .

FLASH
CNGON

installed .
removed

Chapter 2

Here is the flash portrait of : L .PIPEGON
L .PIPEGON

60
60

30
30

40 2 0 180
- 40 2 0 180

~ . ~ * " ' * . ~ -
* - - .

. - ~ ~

. . * * . .
* *

~ . , . - ~ * * ' * * " ~ " . ~

J "' " "' ~
* . * * ~ . .

- * os -

- . , . . . *

~ . * ' .

. . . ~

~ ' " * *

.. 1 ,: ..
" " . .

. ~

~ .

, . . .

* *

- *

~ .

. ~

~ :' t ..*
* ' " * *

~

~ ~ . . .

,

* . . - * *

- - * * ~ ~

" ' * ~ . * r
~ " tt ~ * ~ o ' \ W* * " ~ ' " ~

" " "
" " . .

. tt ~ ~

- * * -

" . ~ . . * , , " . ~ "

Cosure

52

Have you noticed that even the most complex designs we have done so far are

drawn quite quickly ? Each is complete by the time the roller has made a single

360-degree trip around the pipe . If the roller makes a second trip around the

pipe, the design repeats exactly. We can describe this kind of design as one that

has "closed upon itself " or, more briefly , that has "closed" after one trip .

Not all designs produced by our PIPEGON machine will close after only one

trip ; some will take several trips to close, and others will require a great number

of trips . Experiments will show that altering the sizes of the roller and pipe

leads to different closure patterns . What determines the number of trips before

closure occurs? Can you calculate the trips until closure if you know the sizes of

the roller and pipe? Could you "find " a design that never closed?

What happens if we make the radius of the roller negative ? Right . The

roller is inside the pipe . Some examples are shown on the next page.

Visual Modeling

A portfolio of roller -inside -pipe portraits

53

Words that are visually descriptive , like closure, should call up a variety of

images in your mind . This elicitation of mind -images can be enormously useful in

visual modeling . In each of the following exercises, I will stress the importance

of words . We must talk a lot in conjunction with sketching a lot . Take a few

minutes here to think visually about the word closure. Say " closure" : what

images does it bring to mind ? Tell the turtle to "hurry up and bring a design to a

close." Jot down , or sketch, the image ideas elicited in your own mind by the

chanting of the word . Put it all in your notebook.

Suppose you needed to find a synonym for closure. What would you suggest?

Any suggestion must be descriptive of all the image work we have completed. By

the way , you probably won 't find closure in a standard dictionary . Why is this?

machines

Chapter 2

On the next page is a PIPEGON design that closes only after a number of

trips around the pipe . The individual images show the design at various trip

stages around the pipe . Can you guess the pipe and roller sizes I used?

Words elicit images

Imaginary

54

At the start of this chapter I mentioned that sometimes we would model

machines from the real world - pipes and rollers are very real world - and other

times we would model machines that aren 't so real . Perhaps we can make one

model do both real and imaginary things . For example , can we make our

P IPEGON machine draw some fantastic designs ? (By the way , look at that word

imaginary . Why does it have image in it ? Can you imagine why ?)

Let 's imagine a striped roller inside a pipe . The procedure PIPEGON will

generate a composite picture of this roller as it travels around the inside of a

pipe . So far , this is just like the situations viewed above . But now , let 's

introduce the fantasy feature . Make the radius of the roller larger than the

pipegon

Visual Modeling

A slowly closing

55

Let 's summarize what has happened in the last few pages. We have built a

Logo model that can produce a large variety of images, some of them very

surprising . But more important , we have seen how the act of modeling can

facilitate the visual exploration of some of the characteristics of a real-world

machine. Once we began to tinker with our model , we wanted to tinker further .

Some of our designs posed difficult questions whose answers were not at all

obvious . Closure was such a question . We needed to do more tinkering and more

experimenting to come to grips with what was going on.

Could we have predicted the directions this tinkering and experimentation

would take before we started? I don 't think so. Once we begin to model parts of

our world , the act of modeling takes on a life of its own . I think we have touched

what Levi -Strauss said happens when one plays with miniatures . Model play

"gratifies the intelligence and gives rise to a sense of pleasure which can

already be called aesthetic." I hope you would also describe visual modeling as

fun .

Why pipes and rollers ?

Chapter 2

radius of the pipe in which it " rolls ." Is this possible? Can it be done? I asked

PIP E GON to do it , and the results are shown on the next page. What is

happening ? Are these pictures of real or imaginary machines? How can you

work out your answer? Can you sketch it?

Reca pitula lion

I started with this particular machine because I was interested in it . I could

have used any number of alternative illustrations , but this was my own

direction . I will show you , in the chapters to come , dozens of other examples

that illustrate the ways in which visual modeling encourages the modeler to

look at the world differently .

56

Visual Modeling

Imaginary PIPEGONs?

:11,/Ill

I

S
//

/ I]

57

G

J
8

ld
E

4~

.

){
o
o
q
 S

!l
{1

 0
1
 a

A
!1

E
U

la
1
It?
 lit

?
 a
1!

lM

0
1
 n

o
A

 1
U

t?M
 I

 1
J
a
J
J
a

U
I

.s
a
ld

ill
t?

x
a
 li

M
O

 ln
O

A
 l

{~
n
o
ll

{1
 'l

{J
t?o

ld
d
t
?
 liM

O
 ln

O
A

 P
U

!J
 0

1
 p

a
~

t?l
n
O

J
U

a
 a

q
 I
I!

M

n
o
A

S
n
O!

A
q
o
 o

s
 a

q
 I
I!

M
 s

!l
[1

 J
o
 s

s
a
u
ln

J
a
s
n

 a
l{
1
1
t?l

{1
 a

d
o
l{

 I
 .

S
J!
l[

d
t?
l~

 p
u
t?

 2
u

!I
a
p
o
ill

It

?n
s
!A

 0
1
 l

{J
t?
o
ld

d
t

?
 d

U
O

 ' A
la

S!
J
a
ld

A

la
A

'n

O
A

 M
O

l{S
 0

1
 S

!
u
O

!1
u
a
1
u!

A

W

.

Z
U

1
J
J
S

 0
1
 1

f.J
v
o
J.d

d
v

p
J
J

.n
1.
J
n
J.I
s

V

S!

)
{o

o
q
 a

l{
1
 J

o
 a

N
!1

q
n
s
 a

l{
1
 1

E
l{1

 I
It

?J
a~

.U

O!
l{

s
t?J

 p
a
ln

1
J
n
l1

S
 f

..1
a
A

t

?
 U

!
s
la

1
d
t?l

{J
 a

s
a
l{1

 p
a
J
n
p
O

l1
u!

 p
u
t?

 p
a
la

p
lo

a
A

t?l
{

I
p
u
t?

 s
la

1
d
E

tp
 J

!J
!J

a
d
s
 U

!l
{1

!M

S
a
S

!J
la

X
a
 A

ill

p
a
J
t?
Id

A

lln
J
a
lt

?J
 a

A
t?l

{
I

. A
lt

?l1
!q

lt
?
 I
O

U
 S

!
){

o
o
q
 S

!l
{1

 U
!

S
a
S!J

la
X

a

a
s
a
l

{1
 J

o
 ~

U
!l
a
p
lO

a
l{
1
 'l

a
A

a
M

o
H

.s

1
u
a
p
m

S
 A

ill
 J

o
 s

1
S

a
la

1
u!

a
l{

1
 p

u
t?

 s
1
S

a
la

1
u!

liM
O

A
ill

U
O

 p
a
s
t?q

 a
lt

?
 S

a
S!J

la
X

a
 a

l{
1
 J
O

 II
V

.p

U
!i
ll

U
!

~
U

!M
O

II
o
J
 a
\.{

1
 d

a
a)

{
a
s
t?a

ld
 1

n
g

A
n
a

)!
 a

~
.lo

a
~

 J
o
 'I

.lO
M

 a
lI
I

:S
1
S!1

u
a!

J
S

 S'
C

 a
ld

o
a
J

8
9

l

{~
!M

~U

a
~S

!S
U

O
J
 'a

~E
ln

J
!~

lE
u

!
A

Il
a

~~
n

lO

p
a
s
s
a
ld

x
a

A

n
E

q
la

A

'~
n

o

p
a

~J
E

 A
I~

!J
!I

d
w

!

lO

p
a

~E
ln

w
lo

J

A
I~

!J
!I

d
x
a

'l
O

!A
E

l{
a
q

J
O

 a
S

ln
O

J

E
 ~

lE
llJ

o

~
 '

O
O
~

 S
IE

W
!U

E
 l

a
M

o
I

a
l {~

 P
U

E
 'U

E
W

 s
a
lq

E
u
a
 ~

E
llM

 a
lE

 A
a
ll

].
 '

P
Il
O

M

a
ll

~
 2

u
!n

l
~s

u
O

J
 J

o
 S

A
 E
M

 a
lE

,,
-

s
Ia

p
o

w

lO

-
S
~J

n
l

~S
U

O
J
 a

s
a
ll

].

'S
]3

P
O

U
l s

u
la

~~
E

d
 a

s
a
l{

~
 p

a
II

E
J

a
A

E
l{
 n

a
M

S

E
 ~

s
n

f
P

ln
o

J

a
H

'

a
z

!s
 l

O
J
 u

o

iC
l~

 a
ld

o
a
d

~E
l{
~

 s
u
la

~~
E

d
 a

l{
~

 o
~

 S
lJ

n
.ll

S
U

O
J
 a

W
E

U
 a

l{
~

 s
a

A
!2

 A
n

a
)!

,

,'
n
E

 ~
E

 2
u

!l
{~

o
u
 U

E
l{
~

 In
J
d
la

l
{

a
lO

W
 S

!
~!

J
 lo

a
d

E

 u
a

A
H

 '
~!

 J
O

 a
s
u

a
s
 A

U
E

a

){
E

W
 o

~
 a

lq
E

u
n

S
!

U
E

W
 ~

E
l{
~

 ~
!a

u
a
2
0
w

o
l

{
p
a

~E
!~

U
a

la
J
J!

p
U

n

U

E
 l{

J
n

s
 a

q
 o

~
 S

lE
a

d
d

E

P
Il
O

M

a
l{

~
 s

u
la

~~
E

d
 l

{J
n
s
 ~

n
O

l{
~!

M
 ~

a
A

 '
p
o
0
2

iC
la

A
 S

A
E

M
IE

 ~o
u

S
!

~!
J
 a

lI
.1

 'p
a

s
o

d
w

o
J

S

!
P

Il
O

M

a
l{

~
 l

{J
!l

{M

J
O

 s
a

!~
!I

E
o
l

a
l{

~
 l

a
A

O

~!
J

o

~
 s

~d
w

a
~~

E
 u

a
l{

~
 P

U
E

S

a~
E

a
lJ

a
ll

l{
J
!l

{M
 s

~a
ld

w
a

~
 lO

 s
u
la

~~
E

d
 ~

u
a
lE

d
s
u
E

l
~

 l{
2
n
o
llI

~
 P

Il
o

M

s
!l

{
~E

 S
){

O
O

I U
E

W
"

'
s~

s
!~

u
a

!J
s
 S

E
 a

ld
o

a
d

lI
E

p

a
M

a
!A

 A
n

a
)!

'

~J
E

J
 U

I
's

~s
!~

u
a

!J
s
 A

q
 p

a
s
n

a
s
o
l{

~
 o

~
 lE

I!
W

!S
 a

lE
 ~

E
l{
~

 s
a

n
b

!u
l{

J
a

~
 2

u
!s

n
 P

Il
O

M

S
!l

{
J
O

a
s
u
a
s

a
){

E
W

 o
~

 S
a!

l~
 u

o
s
la

d

l{
J
E

a
 ~

E
l{
~

 M
a

!A
 S

!l
{

w
a

ll
s
a

W
O

J
 a

w
E

J
 o

~
 W

!E
IJ

 S
,A

n
a

)!

'

A
2
0
IO

l{
J
A

s
d

P
U

E

'A

2
0
IO

!J
O

S
 '

S
J!

S
A

lld

'S
J!

~E
w

a
l
{~

E
w

U

!
p

a
U

!E
l~

 S
E

M

5'
0

6
1

u

!

S
E

S
U

E

)!
 U

!
U

lO
q
 '

A
n
a

)!

a
2
lo

a
~

'2

u
!P

I!
n
q
 I

a
p
o
w

~n

o
q

E
 2

u
!)

{U
!l

{~
 U

M
O

 A
W

 p
a

J
u

a
n

u
u

!

A
I

~E
a
l2

S

E
ll

O
l{
M

~s

!2
0
IO

l{
J
A

s
d

U

E
J!

la
w

y

U
E

 J
o
)

{l
O

M

a
l{

~
 n

o
A

o

~
 2

U
!J

n
p

O
l

~U
!

A
q

la
ll

~l
n
J

0
2

a
w

~a

I
'~

u
a
w

n
J
o
p

IE
u
o
s
la

d

A
la

A

E
 S

!
){

o
o

q

s!
l{

~
 ~

E
l{
~

 p
a

~~
!W

p
E

 2
U

!A
E

H

other courses of behavior or inconsistent with them, intellectually reasoned or

vegetatively sensed."

Each person's scientist aspect encourages him to " improve his constructs by

increasing his repertory , by altering them to provide better fits , and by

subsuming them with subordinate constructs or systems." For Kelly , human

behavior is the application of scientific method in making sense of a particular

environment . Rather than merely responding to surroundings , people use an

experimental approach to test and extend their system of personal constructs .

Each person 's goal , in Kelly 's view , is to build explanatory models that

effectively explain and predict personal environments .

Kelly suggested shortcuts for improving construct systems. Kelly 's shortcut

was to encourage individuals to make their own constructs verbally explicit . His

most famous method for eliciting and verbalizing personal constructs is known as

the repertory grid technique . Using slightly different words , Kelly 's techniques

encouraged individuals to build verbal models of their own constructs . Once

built , these verbal models could be analyzed in much the same way as we have

analyzed our pipe -and-roller model . Tinkering with constructs would occur

naturally , and this would encourage further tinkering . And as a result of this

play, construct models might become more general and more powerful .

Kelly worked with verbal rather than visual models, but many of his ideas

can be extended to the latter . My interest , as was Kelly 's, is to suggest how to

describe our inner models . While Kelly was interested in the verbal description

of models , I am interested in more graphical descriptions . My goal is to

encourage you to look at your own visual baggage. Obviously , I need words , too,

to help in my form of elicitation . Sometimes, you may think that I rely on words

too much . Too much chat, you might say. . .

If you are intrigued by this very brief account of George Kelly 's work , find

his book A Theory of Personality: the psychology of personal constructs (W. W.

Norton , New York , 1963). All the Kelly quotes were taken from it .

Visual Modeling

59

Exercises

How do you feel about carnivals and amusement parks ? Do you enjoy their

mechanical rides? I 'm not talking about tame rides, like the merry -go- round or

carousel, but wild rides that yank the rider through space. On the next page is a

sketch of a machine that gave me a dose of healthy terror .

Suppose that we are watching this machine from a safe distance. A brave

friend is sitting inside it and pointing a very bright flashlight at us. What

pattern will this light trace out as the machine grinds into life ?

The pulls and pushes on the rider of this machine change suddenly and

unexpectedly . Can you make a picture of this? Can you describe visually why

this kind of machine is so scary?

Chapter 2

Exercise 2.1

Can you come up with some rules about P IPEGON closure ? Specifically , can you

characterize a final pipegon image in terms of the dimensions of its parts ?

Experiment a bit . Try to make some generalizations . Do the generalizations hold

up after more experimenting ? Whether you feel successful in this activity or not ,

find the following book in your local library : E. H . Lockwood , A Book of Curves

(Cambridge University Press, Cambridge , 1963).

This book may help you think about closure . It may also suggest other

image ideas to think about visually . Don 't worry too much about the book 's

math . Look at the diagrams , and read the chapter names . Listen to these

chapters : cardioids , limac ;ons , astroids , right strophoids , tractrices , roulettes ,

and glissettes . What images do these names dredge up ? Sketch them before you

find the book .

Exercise 2.2

60

Design some imaginary carnival rides and give your machines imaginative

names. Draw big sketches of your ideas; draw them large enough so that others

can "read" them. Describe the ride in words so that potential travelers will

know what to expect, before they climb aboard. You had better show them some

pictures of the trip as well. Why not use Logo to generate these scenes?

Exercise 2.4

Do you know the term "kinetic sculpture " ? If not, you can guess what they are, or

rather what they do? Kinetic sculptures are mechanical or electronic sculpture -

machines that move, clank, or flash . Some even squirt water (for example, the

wonderful kinetic fountain designed by Nikki de Saint-Phalle and Jean Tinguely

opposite the Pompidou Center in Paris).

Visual Modeling

f "t..~5HUhf ' T

, ~ - - - - - - - - - . . . -

Exercise 2.;2

61

Chapter 2

Carnival rides are a special class of kinetic sculptures . They may not seem

suitable for art gallery installation , but I have seen films of amusement park

rides included in exhibitions . The French sculptor Jean Tinguely does kinetic

sculpture on a more modest scale. Below is a reproduction of his " Homage a

Marcel Duchamp ," done in 1960. It is human scale, about 5 feet high .

Design and build a kinetic sculpture using Logo. You might start by trying to

model the Tinguely machine. PIPEGONs are a kind of kinetic sculpture , too.

62

Chapter 3
Visual Discovery

The style of discovery

This chapter continues the exploration of visual models and how they can

stretch your mind -and-eye's vision into areas unfamiliar to you . The style of

presenta tion remains the exercise form . Exercises will encourage you to

experiment dynamically with the simplest of shapes. I hope to convince you ,

through illustrations , that playing experimentally with familiar and plain

objects can lead you into a space filled with objects that are not only unfamiliar

but surprisingly different from what you expected.

"The discoverer is the [person] who sees in familiar objects what no one else has

seen before . "

Norwood Russell Hansen

" In order to think productively about the nature of a fact or problem , whether in

the realm of physical objects or that of abstract theory , one needs a medium of

thought in which the properties of the situation to be explored can be

represented . "

Rudolf Arnheim

CNGON

Chapter 3

Problem -solving style

This book is structured around two kinds of exercises . First , there are many

exercises described in the text to illustrate what I consider to be good problem -

solving style . You don 't have to do it my way , but I want you to see one person 's

way . Second , the exercise section at the end of each chapter offers several open -

ended problems that demand originality and flamboyance . These exercises

generally are not illustrated in the text ; I don 't want to influence your creativity

by showing you how anybody else did them .

Let 's begin this chapter , therefore , by finishing up some of the more specific

exercises at the end of Chapter 1. From now on , at least one assigned problem

from the previous chapter will be discussed in detail at the start of each

chapter As I have already mentioned , much of the learning of a craft is ac-

quired by watching and copying someone who is used to doing it . Constructive

copying can lessen your programming anxiety by providing a firm support for

personal exploration . (I' ve said that before , but it is worth repeating .)

Centered polygons with

Let's begin with a final look a t Exercise 1.1. This problem asked you to refashion

NGON. The new procedure, CNGON, should draw an n-sided polygon around a

central point. CNGON, named for entered NGONs, will take two arguments: first,

the radius of the circle circumscribed on the polygon, and second, the number of

polygonal edges. Here is the completed version with plenty of comment lines,

each introduced by a semicolon:

TO CNGON :N :RAD
PU FD :RAD
; Move out to the circumference of circumscribed circle .
RT 180 - (90* (:N- 2) / :N) PD
; Turn right to face along one of the edges of the polygon .
NGON :N (2* :RAD*SIN 180/ :N)
; Draw an NGON with edge expressed in terms of the radius .

64

State transparency

What on earth does that mean? Notice an interesting feature of CNGON. After

CNGON has drawn a figure , the turtle is returned to its starting place. CNGON puts

the turtle back to where it found it (in terms of its screen location and its

heading). We can also refer to the turtle 's position and heading as its state.

Because CNGON leaves the turtle in the same state in which it found it , CNGON is

said to be state transparent . NGON, by the way , is also state transparent . We

will find this notion useful later in this chapter , so remember the technical

term . It 's a nice visual description , as well .

Recall, now , how you began your review of Logo mechanics. First, you drew boxes

of fixed size. You then extended the idea of '~ ox" to include polygon shapes of

any number of sides and designed a procedure, NGON, to draw them.

CNGON uses the ideas of NGON but extends them. Our next step is to extend

CNGON to make it more general. Let's think about generalizing CNGON to solve

two of the exercises at the end of Chapter 1. Exercise 1.3 asked you to add the

notion of spin to CNGON, and Exercise 1.4 asked you to fill up CNGON with other

CNGONs. Let 's start with the latter as it is a bit simpler and has one less

argument .

Visual Discovery

The distance traveled so far

65

 The idea in words:

Chapter 3

Generalizing CNGON to draw concentric polygons

The diagrams accompanying the exercise suggested one way of filling up

polygons : draw many increasingly smaller polygons , one inside another , until

you have filled up the polygon with color or with texture .

The idea in sketches:

C -e. ,..) ~

~ Q\JAQ..GS

Draw several polygons around a central point using CNGON. Allow each

succeeding polygon to be a different size. If the radius of each succeeding polygon

"shrinks " by 1 unit , the shape outlined by the largest polygon will gradually

fill up with color . In summary , the new procedure will draw concentric polygons .

The size of the first polygon will be set by one argument ; the amount of size

change of succeeding polygons will be determined by another argument ; the

number of sides to the polygons and the number of concentric figures will be

determined by two additional arguments . Let's call this new procedure CONGON

for concentric polygons . What will the first line of CONGON look like with all

the needed arguments nicely arranged?

66

c. o ~ M 0 ...J CE .oJ " TC C2.

II~ At -L- T (1.t p. ..JG:LE. ~

Co ~ ~ Dij

OF A C- L

Visual

Experimenting with CONGON

Discovery

CNGON : N :RAD

CONGON :N (:RAD- : SLICE)
END

: SLICE (:TIMES- l)

CONGON
CONGON
CONGON

4 80 1 80
4 80 4 20
4 80 1 20

67

First, fill up a square of radius equal to 80 totally with color . Second, fill up a

square of radius equal to 80 with 20 concentric squares. Make each succeeding

square 4 units smaller than the previously drawn one. Third , fill a square frame

of radius equal to 80 and width equal to 20 with black . If you have a color Logo,

you can set the pen to the color you wish . I am sticking with black and white .

Here are the three commands ; the results are shown on the next page :

The idea as a Lo~o procedure:

TO CONGON :N :RAD : SLICE :TIMES
; CONGON stands for ~ centric NGONs.
; :N is the number of sides .
; :RAD is the radius of the first figure .
; : SLICE is the change in radius of succeeding NGONs.
; :TIMES is the number of polygons to draw .

Once design ideas are written down in sketches and words, with all the

arguments defined and named, writing the Logo procedure becomes very easy.

CONGON needs a structure to execute CNGON as many times as is specified by

the argument : TIME S. We can use recursion for this, similar to its use in

SPINGON in the last chapter.

TO CONGON :N :RAD : SLICE :TIMES
; Concentric polygon exercise .
IF :TIMES < 1 [STOP]

Chapter 3

: SLICE (: TIMES- l) :ANGLE

Is this procedure state transparent ? Well , no.

the center of the figure , and

guarantee that the turtle will end facing

The turtle always returns to

that was where it started from , but there is no

in its original direction . The turtle

turns a total amount , to the right , from its starting heading of : TIMES * : ANGLE

degrees. To make this procedure state transparent , we need to turn the turtle

back to the left by this amount after all the polygons have been drawn . Can we

insert such a command in SPIN . CONGON above? The problem is that the : TIMES

argument is decreased by 1 each time recursion is used in the procedure 's last

line . This is the stopping mechanism . When SPIN . CONGON is finished , the

value of : TIMES is zero.

We could embed SP IN . CONGON in another new procedure , which we call

SPIN . Why is SPIN able to use the original value of : TIMES when

SP IN . CONGON isn 't? Note : there are other ways of handling this state

transparency problem . This is my way ; I like it because it can be understood

easily. It 's also very tidy because it doesn't demand any more arguments or the

introduction of local variables- which we haven't discussed yet .

TO SPIN :N :RAD :SLICE :TIMES :ANGLE
; State - transparent SPIN.CONGON runner .
SPIN.CONGON :N :RAD : SLICE :TIMES :ANGLE
LT :TIMES* :ANGLE

END

SP IN does only two things . It runs SP IN . CONGON and then returns the

turtle 's heading to its original state.

70

TO SPIN . CONGON : N : RAD : SLICE : TIMES : ANGLE

; Concentric polygon exercise .

; Note new name and new argument : ANGLE .

IF : TIMES < 1 [STOP]

CNGON : N : RAD

RT : ANGLE

; Single new command .

SPIN . CONGON : N (: RAD - : SLICE)

END

Squarish SPIN images

Visual Discovery

 SPIN productions

The first figure was run with SPIN 6 100 4 25 5 and the second with only

the sign of the last argument value made negative . This changes the spin

orienta tion .

71

The left figure was produced with SPIN 4 100 4 25 5; how can we make it

more complex ? The right figure suggests a new kind of complexity that we

haven't yet seen. It is a composite image that includes the left figure with its

mirror image placed on top of it .

More squares

experiments

It might be interesting to set up a more controlled experiment with SP IN . For

example, let 's build a structure to see how SPIN -produced designs vary as we

alter the arguments . We can simplify the experiment by changing only one

Chapter 3

SPIN 4 120 2 60 5 SPIN 4 120 1 120 5

A winter holiday wreath

Visual

72

variable at a time

: ANGLE argument .

Visual Discovery

I have decided to look first at the effect of an altered

I thought it would be nice to see a number of SPIN . CONGONS on the screen at

the same time , so that I can compare the effect of the single changed argument .

By looking at the size of my screen, and deciding that my individual figures

would be about 50, I decided where (the cartesian x-y addresses) on the screen I

would put them. Here is my visual simulation machine.

:A5
screen at once .

:TIMES
:TIMES
:TIMES
: "rIMES
:TIMES

:Al
:A2
:A3
:A4
:A5

turtle -reference moving la ter .

Four experiments with EXPLORE

73

EXPLORE : N : SLICE : TIMES : Al : A2 : A3 : A4

To explore five different figures on the

Only the angle variable will be changed .

SETXY (0 0) PD SPIN : N 50 : SLICE

SETXY (70 60) PD SPIN : N 50 : SLICE

SETXY (70 - 60) PD SPIN : N 50 : SLICE

SETXY (- 70 - 60) PD SPIN : N 50 : SLICE

SETXY (- 70 60) PD SPIN : N 50 : SLICE

TO

.

,

.

,

PO

PO

PO

PO

PO

END

I don 't much like using the cartesian system to move the turtle around the

screen , but this seemed an easy and quick way to start experimenting . I 'll do

Chapter

U)

....
..

~

VisualDiscovery

Some surprising images with EXPLORE

The figures on the last two pages looked isolated to me, so I decided to make

them overlap by increasing the values used for the : TIMES argument . Having

increased this value , I went back to my initial rule : keep all the arguments

constant but one, the : ANGLE argument . Suddenly I had designs that were

surprisingly intriguing . I think one reason for this surprise is that we can no

longer predict the results of our experiment before we carry it out . And in

addition , it is not at all obvious why the experiment proceeds the way it does.

For example, note the strange central figure in the following group . Note,

too, how it grows larger from the first to the third figure . The shape of that

beast is very responsive to small changes in : ANGLE values. And the beast exists

only within a narrow range of values. Our experimental machine has shown us

something visually odd growing inside these designs. It has also indicated that

this form of oddness is extremely sensitive to small changes in our experimental

parameter . This is a sort of visual sensitivity analysis.

The argument values used are placed above each experimental result .

EXPLORE 4 4 40 4 4 444

75

Chapter 3

EXPLORE 4 4 40 4.5 4 . 5 4 .5 4. 5 4 . 5

EXPLORE 4 4 40 5 5 555

76

Visual Discovery

EXPLORE44 4066666

EXPLORE 4 4 40 10 10 10 10 10

77

She could then move the design cutouts around the paper, rotating and fitting

them together to form larger , composite designs. This is similar to fitting dec-

orated tiles together in various ways to create different patterns .

Here is the surprising result of one such cutout exploration . Four

SPIN . CONGONS have been fitted together, like tiles, to form a larger design.

Chapter 3

15 15 15EXPLORE 4 4 35 15 15

Tiling spinning shapes

1. First , she used SPIN to produce many large single designs .

2. She printed these out on her printer .

3. She made dozens of photocopies .

4. She cut out the designs and placed them on a large piece of stiff paper .

78

The overlapping of the previous images suggested another kind of experiment :

could the spinning shapes be placed on the screen so that they would not overlap

too much but would still touch and influence each other ?

A student of mine considered this as a problem in tiling . Here 's what she

decided to do :

Visual

You probably detected that the above composite design could be done with a

Logo procedure far more easily than with scissors and glue . I designed the

following procedure to tile four square designs together . Any idea what that

argument called : ALT is for ? : ALT is short for alternating . If it is set to 1, all

four of the tiles will spin to the right ; that is, there will be no alternation of

spin direction . However , if : ALT is set to -1, the odd tiles will spin to the left

while the even tiles will spin to the right .

Notice the use here of the MAKE command to alternate the sign of the

turning angle. If you have forgotten the MAKE command , review it now in your

Logo manual .

Discovery

Logo-laid tiles

: TIMES :ANGLE

"ANGLE :ANGLE * :ALT]

79

TO LAY. SQ. TILES :RAD : SLICE : TIMES :ANGLE :ALT
REPEAT 4 [PU FD : RAD PD -

SPIN 4 : RAD : SLICE
PU BK : RAD -
RT 90
MAKE

END

--~ ..

~
k '
~ff

Chapter 3

Here are two partially overlapping square tile designs . Note the

appearance of more serpents.

Laying other tile shapes

Why not tile triangular shapes? The only quirk here is the necessity to turn the

turtle 180 degrees to face the center of the composite design before drawing a

SPIN . CONGON. Why is this turn necessary?

80

The next illustration shows two square tile designs with different spin

alternation schemes . The first is always to the right , the second alternates .

Hexagonal tiling patterns

Visual Discovery

-

END

Why not? The procedure is straightforward . Note that the angle turned between

tiles is now 120 degrees.

81

LT 180

TO LAY . TR . TILES : RAD : SLICE : TIMES : ANGLE : ALT

REPEAT 6 [PO FD : RAD PD -

; Orientation of turtle to face center .

SPIN 3 : RAD : SLICE : TIMES : ANGLE

RT 180

; Reorientation of turtle .
PU BK : RAD -
RT 60 -
MAKE "ANGLE : ANGLE * : ALT]

~ ~ (j~..", .~ " , ~ " ". . #f~.... \~~~ ,
~ . u " ,\,,-,, ' " ..

", 1 ; I "S~-";'~'"
, I : I ' ' \ ,: ' I I \ ' ,
, , , . : \ . "
~ , lil ,
. 1 " 1 .
\ . , ! I I ,

i;5j. lilii
.. t J" t
~!I, I' II;!
x, "'- '\ (. !,~~~~~ Iff! I

~ ~..,"'-';'~ ~ ~
' . . ~ ' .

" . . , , ' - " .

~ ':' ' ,," " , " / " ' / .~

~~ "~~~:::: ~~~~~~~ ~ ~~'::-....,
/.;/1; '~~~~~~' J. (i i ~ "'::::l'\ " \ ' ' il , ',:"

i I . \' . Ii ~ ~

! t.t 'ttilij 1"\'; If ! bi, , "I '1. ; 1\" I ., ,:,ltl ' "
~"i. ;;111:~! I. Ii': 07 " . . . , N, . I I . '

~.~' IJ!I'1~, Il}t" . tt , " "" : : 1

~"'~,~ 11'11[',," , fIll !" ' " . , . " " . " ' , \ I ' .'",-,,\ ~~~V'.. """"l \ V"
' .." , ...,....." ~ ~

~ ~\~~ -~ff~ "~\~:, ,,"~ .f!J
~;~ p- ...,::, ~~ ~./

Chapter 3

: TIMES :ANGLE :ALTTO LAY . HEX . TILES : RAD : SLICE

REPEAT 3 [PU FD : RAD PD -

SPIN 6 : RAD : SLICE

PU BK : RAD -

RT 120 -

MAKE " ANGLE : ANGLE *

:TIMES :ANGLE

: ALT]
END

Something curious occurs now . Note that three of the four designs below

look as if they are interlaced . Are they? What is happening ?

82

Visual Discovery

Still only polygons

We have come a long way from the original BOX procedure of Chapter 1 to the

surprising designs shown above. But do not forget that all the images we have

created so far are still only polygons . Polygons, yes; but we have gone out of our

way to play and experiment with these simple shapes, not just to complicate

them but in the hope that we might see something new through them. Have you

found the images of this chapter sufficiently strange to justify that hope?

Extending the range of exploratory models

Before going on, I would like to describe another exploratory model . In the

following case, a model is used to investigate some of the visual characteristics

of a painting . So far , we have only looked at our own work . The results of the

next exploration show that models can be effective visual thinking tools for

analyzing somebody else's images . Specifically , this model will be inves -

tigating the qualities of balance in a design composition .

A Delaunay machine

Here is a reproduction of a 1938 painting , entitled "Disque," by the French artist

Robert Delaunay . I recently discovered this work in a Paris museum . Although

the thing is enormous , about 5 by 6 meters, I had never seen it before. Why , I

wondered , did I like it so much?

I decided to think about this by building a model to "simulate " the picture .

Obviously , I did not hope - or want - to reproduce the painting . I can always go

and see the real painting whenever I want . Perhaps, I thought , I could fashion a

model to explore some of the characteristics of a painting that I especially

liked . And that might help me to see better what attracted my eye in the first

place .

83

Chapter 3

I decided against using too many design elements. The ones I selected were a bit

arbitrary , but they were based on my impressions of the design elements used by

Delaunay . Notice that none of my elements is an exact replica of anything in the

painting . I built a different Logo procedure to draw each of these elements and to

place them onto an imaginary canvas grid . Each element and its procedure is

shown below .

I would be exploring two things with my model : the world I was looking at

in the Delaunay painting and the world of how I felt about it . I was sure that

the latter would predominate . Why ? Because I am convinced that models tell

more about their builders than about what is being modeled .

Painting elements

84

Visual Discovery

TO DOUBLE.RINGS
CONGON 40 120 5 5
CONGON 40 80 2 5

END

85

These procedures are simple and easy to read, but I want to add a few

comments. I decided not to vary every possible dimension in my experiments. The

double rings , for example, have a fixed size. However , while the form and size

of the other design components are also fixed , each can be placed at different

locations of the canvas. These design element locations are defined by two

arguments : first , an : ANGLE argument sets the element 's angular position ,

measured clockwise from the straight -up position ; and second, a : DIST argument

defines the elements distance from the center.

Each procedure is state transparent . Why might this be useful when we

begin to use these procedures to paint canvases?

Chapter

 I

3

86

TO WIDE. SPLINES :DIST :ANGLE
RT :ANGLE
REPEAT 15 [FD :DIST BK :DIST RT 3]
LT :ANGLE + 45

END

TO NARROW . SPLINES : DIST : ANGLE
RT : ANGLE

REPEAT 7 [FD : DIST BK : DIST RT 3]
LT : ANGLE + 21

END

tI
j

1-
3

tI
j

1-
3

Z
tU

O
O

~
O

Z

tU
O

~
O

0
0
0
0
1

-3

0
0
0
1

-3
Z

Z

1-
3

Z

0
t:
i:
'

G
)

G
)

.
.

~

t:
i:
'

G
)

.
.

Z

~
o
o

~
o

~
O

~
tI
j

z
z
z

.
z
z

.
.

.
G

)
1-

3

.
.

G
)

1-
3

O
~

~
to

!
~

O

~
to

!
~

H
O

O
tI
j

~

H
O

tI
j

~
C/

)
G

)
C/

)
G

)
I-

3
I

-'
W

tU
tI
j

I-
3
N

tU
tI

j

0
0
0
1

-3

0
0
1

-3
to

!
to

!
1-

3

I-
'

I-
'

h
j

.
.

1-
3

I-
'

h
j

.
.

0
0

0
0

.
.

-
.
J

I
-
'

H

.
.

I
-
'

H

~

0
.

.
C/

)
~

0

.
.

C/
)

Z

0
1

-3

Z

0
1

-3
G

)
H

G

)
H

to
!

C/
)

.
.

to
!

C/
)

.
.

tI
j

1-
3

~

tI
j

1-
3

~
Z

Z

tU
G

)
tU

G
)

0

to
!

0

to
!

tI
j

tI
j

Visual Discovery

87

Chapter 3

 ~~r:;;:;~~~o .,. ~
/(,r '~ ,)
~)
1'~~~~ ~~~~i~~'

TO FOUR. TARGET : DIST :ANGLE

1 2 MAKE "R :R 5]

TO FIVE . TARGET : DIST :ANGLE

1 5 MAKE " R : R - 1 0]

88

RT :ANGLE PU FD :DIST
LOCAL "R MAKE "R 25
REPEAT 4 [CONGON 40 :R
PU BK :DIST LT :ANGLE

END

PD

RT : ANGLE PU FD : DIST

LOCAL " R MAKE " R 5 0

5 [CONGON 40 : R

: DIST LT : ANGLE

PO

REPEAT
PO BK

END

Visual

experimentsDelaunay

Discovery

89

Six illustrations of Delaunay experiments follow . Turn the book 'around and look

at the designs in different orientations . How do you feel about them ? Does

orientation of the page effect a specific design ? Do you find some of the designs

more pleasurable to look at than others ? Is there an outstanding design , in your

opinion ? What makes it so ?

ement ? Here are some

forms may be judged

Chapter 3

Balance

How does the eye calculate the weight of a design el
rules . The relative size of shapes is important : bigger

90

My feelings after this experiment ? Did I discover why I liked the painting so

much? Yes. I was convinced (or rather , I convinced myself) that the aspect of the

Delaunay painting that caught my attention was its balance. I watched myself

as I tried to place my design elements on the screen. I kept thinking to myself : try

to balance the composition . This was difficult because the weight of each of my

elements was hard to calculate until after I tried a new configuration .

I discovered , however , through experimentation , that the eye has its own

rules for judging the balance of designs. To evaluate balance, we seem to divide

pictures into two equal parts . This division is horizontal , not vertical ; a left -

and -right partitioning , not an up -and -down one. We look into each half ,

visually add up the weight of the elements seen there, and compare these

weights with a similar calculation made within the second half . Usually , we

find a balanced scene to be more pleasant than an unbalanced one. In fact,

extreme visual imbalance can make me feel very uneasy.

Visual Discovery

heavier than smaller ones. But relative color value is also important . For

example, white against black, because it attracts our attention , has more weight

than gray against black, which attracts less attention . Thus a small black object

might be heavier than a large gray one, if both were on a white background .

Variety of shape is also important in weight calculations . A more complex

shape, because it attracts the eye, may be judged heavier than a boring shape.

For example , a small asterisk may have more weight than a larger circle .

Relative position is important , too. For example, a small shape in an extreme

position can sometimes balance heavy shapes that are more centrally located.

When all the elements of a scene seem to radiate from a central point , a

kind of balance known as radial balance occurs.

Because the eye seems to be concerned with horizontal rather than vertical

balance, rotating a picture can destroy its balance. Why ? Or, on the other hand,

a rotation can fix an unbalanced picture .

Now go back and look at the Delaunay painting . I see a calming image

made from disparate elements, finely balanced into a single design. Turn it on its

side and what happens? Now go back and look at the Delaunay simulations . Do

they halance? How would you change each of them to make them more bal-

anced? Try some balancing exercises yourself with a design machine of your own

invention .

Polygons placed on the vertices of other polygons

There is one remaining exercise to discuss from Chapter 1. Exercise 1.5 asked you

to design a Logo procedure that will draw polygons centered on the vertices of

other polygons . You need to have a good feeling for what this problem is really

about before you rush off and try to solve it . As always, small drawings can help

by making problems easier to visualize and to manipulate .

Even the simple sketches below should make the problem clearer. You will

see the pattern required . Start by drawing one polygon . Now draw a series, or a

91

Chapter 3

92

layer , of polygons on the vertices of the original polygon . Now draw polygons on

the vertices of the polygons just drawn . The sizes of the polygons in one layer

could change from those of the previous layer - getting larger or smaller - or all

the polygons could remain the same size . We could change the shape of the

polygons as well , from triangles to squares to pentagons . But let 's work only with

similar polygons in anyone design . We can let their relative sizes change ,

though , from one layer to the next .

Recursion again

The hint given in Exercise 1 .5 suggests that recursion , placed inside the body of

CNGON , might be helpful . Let 's look again at CNGON .

TO CNGON : N : RAD

PU FD : RAD

RT 180 - (90 * (: N - 2) / : N) PD .

NGON : N (2 * : RAD * SIN 180 / : N)

LT 180 - (90 * (: N - 2) / : N)

PU BK : RAD PD

END

We want to draw centered polygons (CNGONS) around the vertices of other

polygons . Let 's find the place inside the CNGON procedure that corresponds to

the turtle 's arrival at a vertex . Then we can insert the command to draw another

centered polygon around the turtle 's current position on a vertex .

The vertex arrival point inside CNGON is the spot where recursion should

take place : once a vertex is reached in the polygon drawing procedure CNGON ,

CNGON could be asked to draw another polygon around it ; once this new polygon

reaches a vertex , CNGON could be asked again to draw a polygon around the

current position , and so forth . How can we find the vertex arrival point ? NGON

draws the polygon , so we will find the vertex arrival points inside NGON .

Visual Discovery

93

Chapter 3

TO NGON :N :EDGE
REPEAT :N [FD :EDGE (* * *) RT 360/ :N]

TO CNGON :N :RAD
PU FD :RAD
RT 180 - (90* (:N- 2) / :N) PD
REPEAT :N [FD (2* :RAD*SIN

RT 360/ :N]
LT 180 - (90* (:N- 2) / :N)
PU BK :RAD PD

END

180/ :N) (* * *)

Vertex arrival point

94

Now try saying in words what you would like to insert at the (* * *) above and

what arguments the insertion requires . Here is an sample of such "wordy "

thinking : "OK, turtle : whenever you find yourself at the vertex arrival point

(the place between drawing an edge and turning in preparation for drawing the

next edge), draw another polygon . As you are drawing that next polygon , stop

after each edge and plan to do another polygon . But don't do this forever . To stop

yourself , you will need a new argument ; call it : LEV, for recursion level .

"You also will need to know if each succeeding layer of polygons is to get

bigger or smaller in terms of of the preceding layer . So, define another argument ;

call it : F AC for growth factor . This will define for you whether to shrink or

enlarge polygons from one layer to the next.

"Give the new procedure a new name, RECGON, for illursing polygQnS.

END

The (* * *) symbol indicates the place in the procedure NGON where the

turtle arrives at a polygonal vertex. How can we find this location inside CNGON

when it uses NGON? Look closely at the following . How does this version of

CNGON differ from what we have been using? Not at all . NGON has been opened

up so that we can see its parts. All of NGON is now placed inside of the body of

CNGON; there are no longer two separate procedures . The vertex arrival point is

still marked with (* * *) .

Visual Discovery

 / '

"\ ~

/

<::) v(:~~ ,.. Ae.e'vAl. PO"' T .

/ 1" 'T' ~L j),E c....,o.J o~T" aT'-E AT V€Q.TE"
AI2~I~ L f'o..JT .

Ro-rAT.O.J " oJ6l.~ .~
. . . =,

 iy

~)

~.f... ~

-..,:

,;,

 Two PO~o;.' e. ,- e

' . . " " ." eOTAT , ~ " $ 00 :

. ' . ' , ~ a. " 1" E " ~ ' - v60 ') s .

.' ")

..,.,.." . '..""" . ~
. . . " ,

. " .
. . . '

. . . " . . . ,

."....":. 0 .">...'.,,
G

2oT"=4S.

~oT = 00

95

"One last idea. Maybe you should think about rotating the polygons at a

vertex in relation to the previous polygon . Call this argument : ROT. Look at my

sketches below ."

DI2ECTlo..I OF -n. a.TL~
,' " Pfl-E1'AC1.ATlo..I FolZ.
D~" wlo.lr,. ~ t ",G-o..>
Aeo.J..J[) T"IE: VE:~T~"

p" ,. . rr .

assembled RECGON

Chapter 3

The

Now we need to convert CNGON into RECGON based on these words and sketches.

recursion to another. Can you see how these two arguments control the scaling of

the RECGON design as well as its complexity (that is, level of recursion) ?

Recursion is a tricky business, but it is also very elegant. Many art students

have told me that they find recursion aesthetically pleasing ; they like its

"shape," somehow .

96

Here it is , with plenty of comments .

TO RECGON : N : RAD : FAC : ROT : LEV

; Recursing polygons on vertices of polygons .

IF : LEV < 1 [STOP]

; Stops the recursion at proper level .

PU FD : RAD

RT 180 - (90 * (: N - 2) / : N) PD

REPEAT : N [FD (2 * : RAD * SIN 180 / : N) -

LT : ROT -

; Orients turtle before drawing next figure .

RECGON : N : FAC * : RAD : FAC : ROT : LEV - 1 -

; Here is the inserted recursion apparatus .

; Note how the : RAD argument is scaled by : FAC .

RT : ROT -

; Reorients turtle by removing rotation angle .

; Is state transparency an issue here ?

RT 360 / : N]

LT 180 - (90 * (: N - 2) / : N)

PU BK : RAD PD

END

Note that RECGON has five arguments . Therefore , each time RECGON is

used , five values must be supplied to it . These values control the characteristics

of the figures drawn . Only : RAD and : LEV change their values from one level of

Visual Discovery

Understanding recursion experimentally

97

Recursion is the most elusive concept in this book . I believe it is also one of the

most powerful because it provides you with an entirely new metaphor for visual

thinking . Working and thinking about recursion will encourage you to look -think

at your world differently . In a strange way , recursive thinking gives you the

power to make the world look different .

You may not understand recursion at all in the beginning , until you have

experimented , over and over again, with recursive procedures written by others.

If you can understand one recursive procedure well , you are on your way to using

recursion on your own terms. Toward the goal of understanding a recursive

procedure, you must design your own experimental apparatus to test it out .

Let's playa bit with RECGON. Watch how RECGON directs the screen turtle

from one part of the design to another ; the turtle is walking through recursion

space. Try to get an intuitive feeling for how recursion "does it ." At the end of

this series of design experiments, we will talk more about the mechanical nature

of RECGON and introduce you to a kind of visual model of recursion . For the

moment , though , just play about with RECGON.

For example, ask RECGON to place squares at the vertices of other squares

down to four levels of recursion . Four levels means that there will be squares on

squares on squares on squares. The value that we will type for the argument : LEV

will be 4. Now , what about scaling the design? If we make : FAC equal to .5, the

squares will get smaller as recursion progresses. Finally , what about the rotation

angle, : ROT? Let's try 45 degrees to start . To make this rotation idea less cryptic ,

we will experiment with different values to see what happens. One last item :

set the beginning : RAD to 50 units .

Less obvious RECGONs

Chapter 3

Square RECGONs

RECGON 4 50 . 5 45 4 RECGON 4 50 . 5 0 4

RECGON 3 50 . 5 0 4

Before going on to experimenting with funny values for arguments , to see what

RECGON does , let me pose a question . Can you calculate the number of figures that

RECGON must draw for any kind of polygon and any level of recursion ? If you

98

Triangle RECGONs

RECGON 3 50 . 5 30 4

Visual Discovery

RECGON 4 50 (l / SQRT 2) 0 4

99

could calculate the number of figures that must be drawn , you could guess how

long anyone design might take to draw . Let 's try to attack this for a specific

case. Later, you can generalize the approach .

Think about square RECGONs. A level 1 RECGON would draw only one square,

but a level 2 RECGON would draw an additional four squares on the vertices of

the first : that makes five squares for level 2. Now , at level 3, we must put four

squares on each of the squares drawn at level 2 . That means another 4 times 4 . In

total , level 3 includes 16 + 4 + 1 = 21. Can you work out the general formula for

number of figures in terms of n, the kind of polygon , and L, the level of recursion?

Here are two more RECGONs. The second design was drawn using the

reversing pen color .

Can you verify that the second design was formed from 341 squares? (1 + 4 +

4 *4 + 4 *4 *4 + 4 *4*4 *4 = 341 .)

RECGON 4 10 (SQRT 2) 0 5

<,,/ ,,/ ,,/ >/ " / , , / , ,

A
" , , /

/ / "

" , , /
/ / "
" , , /
/ / "

V

<,,/ ,,/ ,,/ >/ " / , , / , ,

Recursion diagrams: visual models of recursion

We will be talking a lot more about recursion in the following chapters. But let

us end this exploratory work with RECGON by presenting a visual model of how

recursion works .

Before you read on , I need to show you my visual license . What follows is a

visual rather than a technical description of recursion . What I describe as

" happening " on the diagrams does not necessarily coincide with what is

" happening " inside your computer . However , I have found that graphical

recursion models are often far more useful in encouraging an intuitive recursion

sense than technical ones . This is almost always true for art and liberal arts

students , though my results are mixed with science students . But if you hanker

after technical truth , take a computer scientist to dinner .

It is a little difficult to visualize how a procedure can be defined in terms of

itself , so let ' s try the following . When a procedure asks to be run again , imagine

that Logo makes a copy of the original procedure and locates this copy below the

first . This copy is where the turtle goes in search of its next instructions . If the

copy asks to be run again , a third copy is created and located under the second .

The third copy is where the turtle goes in search of further instructions .

If the third copy does not call itself , the recursion goes no deeper and no

more copies of the original procedure are made . The turtle climbs up from the

third copy to the second copy and continues on the second copy looking fof

instructions . If the secol ". d copy does not call itself again , the turtle climbs up to

where it left the first copy .

Think of these copies as sheets of paper on which the identical procedure is

written . The turtle reads instructions from whatever sheet it is currently on .

Suppose the turtle is reading instructions from the top sheet . Suddenly the top

sheet calls itself . The turtle drops from the top sheet down to the sheet just

below it and begins to read the instructions there . If this procedure ends without

recursion , the turtle climbs back to the place on the top sheet where it had left

off . The turtle , of course , carries the values of arguments along with it .

Here is a recursion diagram that sketches the path of operation after we

type RECGON 4 50 45 3 . Notice that the diagram shows two things . First ,

arrows indicate the path the turtle takes from one level to another ; and , second ,

the values are indicated for the 5 arguments at each level .

Chapter 3

100

Visual Discovery

Recursion diagram of RECGON 4 50 . 5 45 3
- -

50 .5 45 4): LEV (4TO RECGON :N :RAD :FAC :ROT
IF :LEV < 1 [STOP]
PO FD :RAD
RT 180 - (90*(:N-2)/ :N) PD

REPEAT :N [FD. (2*:RAD*SIN 180/ :N) - l ~ AI
LT : ROT - F~O~

(RECGON :N :FAC*:RAD :FAC :ROT :LEV-1 - mM~S
RT :ROT -
RT 360/ :N]

LT 180 - (90*(:N-2)/ :N)
PO BK :RAD PD

END 'itS--
TO RECGON :N :RAD :FAC :ROT :LEV (4 25 .5 45 2)
IF :LEV < 1 [STOP]
PO FD :RAD
RT 180 - (90*(:N-2)/ :N) PD

REPEAT :N [FD (2*:RAD*SIN 180/ :N) - l ~?tP
LT :ROT - FaVf'?

(RECGON :N :FAC*:RAD :FAC :ROT :LEV-1 - II('O"\'ES
RT :ROT -
RT 360/ :N]

LT 180 - (90*(:N-2)/ :N)
PO BK :RAD PD

END
--

TO RECGON :N :RAD :FAC :ROT :LEV (4 12.5 .5 45 1)
IF :LEV < 1 [STOP]
PO FD :RAD
RT 180 - (90*(:N-2)/ :N) PD

REPEAT :N [FD (2*:RAD*SIN 180/ :N) - lR~ T
LT :ROT - ~v~

C RECGON :N :FAC*:RAD :FAC :ROT :LEV-1 - ~~E{
RT :ROT -
RT 360/ :N

LT 180 - (90*(:N-2)/ :N)
PO BK .: RAD PD

END -- ---
0 RECGON :N :RAD :FAC :ROT :LEV (4 6.25 .5 45 0)
IF :LEV < 1 [STOP]

101

Exercise 3.1

Chapter 3

Visual thinking

Do I need to summarize what we have been doing ? I don 't think so.

trations show it : a kind of visual thinking about objects and shapes .

The illus-

Exercises

102

Look back over the composite designs that were made from the SPIN . CONGONS

in this chapter . Design a Logo procedure that will produce composite designs

from a number of different design elements.

The following series of designs was done by a student . She labeled the

collection "Hurricanes ." They should give you some ideas. But don 't limit

yourself to figures based on the square.

Visual Discovery

103

Chapter 3

104

Visual Discovery

105

Chapter 3

Here is another student "solution " to this exercise. He has constructed a map of

France with alternatively spinning hexagons.

106

Exercise 3.5

Visual Discovery

Exercise 3.2

Design a procedure that combines the ideas of SPIN . CONGONs with the ideas of

RECGONS.

Exercise 3.3

Look back at the Delaunay machine . Invent a queasy machine that produces the

most unbalanced designs imaginable . Try to characterize in words what your

designs are doing and what you were doing .

Exercise 3.4

Build an exploratory model of a painting that interests you . Make sure you have

a reproduction of the painting to carry around with you . Postcard images are the

best . Go out to your local museum and buy a collection of reproductions by

different artists . Don 't limit yourself to geometric painters ; include realistic

work , even photographs . Select as large a variety of work as you can .

Inspiration may strike from comparing two quite different pictures . Don 't start

doing any Logo until your painting collection is pinned up over your desk . Spend a

lot of time looking at those postcards .

After you have finished this exercise , describe clearly what char -

acteristics you have tried to simulate . Remember that you can simulate the

characteristics of a painting without copying the image . Have your feelings

changed toward your painting ?

107

Study the following several pages of figures . Bring out your visual thinking

gear; can you decompose these composites into their components?

Chapter 3

Stone mason marks

,.

b.5.

3.

108

More stone mason marks

Visual Discovery

/ --- --...

"-
--

--""

"

......_~J_=~/10.

II.

13.

109

Chapter 3

These symbols , called stone mason marks, are copies of the marks builders

of Gothic cathedrals left as signatures on their work . The mark actually put on

the stone is that indicated by the dark lines . These lines are selected segments

from an underlying matrix of lighter lines . The design of an individual stone

mason's mark was, therefore, a two -stage operation : first , design the underlying

line matrix ; and second , make an aesthetic selection of line segments from this

matrix to express an individual 's or guild 's signature . The exercise here is to cre-

ate the line matrices similar to the examples drawn .

Select one of the examples that strikes your fancy. Look hard at it . Think in

terms of polygons and the placement of polygons . Make some free-hand sketches

in your notebook on how you would draw the matrix , component by component .

Next , try to design a Logo procedure that parallels your own drawing .

Take the very first design, for example. It is composed of a circle in which

are placed squares of different sizes and orientations . Finally , several straight

lines are drawn to connect the vertices of the squares to the center of the design.

You can do far more than just reproduce the designs offered here. Generalize

your MASON. MARK procedures so that you can produce a suite of designs based on

the theme suggested by anyone example . Take the first design again, for an

example. Your procedure could have one argument for the overall size of the

figure , while another might define the kinds of polygons placed inside the

circle. The first design has squares inside the circle, while the second design has

triangles . Perhaps your generalized procedure could draw both designs.

Finally , you might want to design some kind of experimental apparatus

that will display several of your designs on the screen at the same time , each

with a slightly different degree of oddness.

If you find all of these designs too boring , design your own .

For a historical description of these symbols and a full geometric analysis

see Matila Ghyka 's The Geometry of Art and Life (Dover , New York , 1977).

110

Visual Discovery

Exercise 3.6

111

Design a personal mark in the manner of, but not limited to, the approach used

by the Gothic stone masons. This mark should be a visual model of several

aspects of your personality . This exercise will require a combination of

introspection and Logo designing . You may find that your Logo designs actually

help the looking within yourself .

Start this exercise by doodling in your notebook before you write any

procedures. Without thinking too much about what you are doing , write down a

list of your own personality quirks . Do this as fast as possible. Now go back over

your list and make small sketches of whatever images come into your mind . Try

to make a sketch for each word . But if one word doesn't cause an image to pop

into your mind quickly , leave it and go on to the next. Finally , combine some of

your best sketches into a single design theme and design a Logo procedure to

explore it . Don 't intellectualize what you are doing . Do everything as quickly as

possible. Think about what you have done only when you have generated some

personality images.

You may find that you will produce many personal marks that you aren't

happy with . That 's OK . Put them all in your notebook and write a short note on

what you were trying to accomplish with each. This is important : keep a trace

of what you are thinking and doing .

Finally , select one or two individual marks . These images are to be included

in your published biography . This is the only authorized biography of your life

and you may wish to write a few words of description . Don 't worry about being

too personal in your description : the book 's production run will be very , very

small . And since few people will read your comments, you can be totally candid .

The next page shows an example of a mark designed by one of my students.

He found a basic theme that he presents in various configurations . Following the

images is his description of what he was trying to say with the mark .

Chapter 3

112

The student's 12ersonal mark ex12lained in words~

Visual Discovery

113

"I liked the idea of using circles in my personal mark. I wanted to show that I

have many interests and that no one single interest is most impor.tant to me. I try

to be a well-rounded person (sorry about that). I get a lot of personal satisfaction

from seeing how a number of different disciplines interact with each other.

Math and art are two examples of my interests.

"I wanted the circles not to overlap in the design- I found that Gothic stone

mason marks get too busy when too many lines overlap; I try to get my life pretty

organized, so I wanted to show the circles in my head all touching- but in a nice

neat way. I like being clever with math, so I was pleased to be able to work out

the math in this design. I wanted the balls to get bigger and to fit nicely

together. They do look a bit like ball bearings, I'm afraid. Maybe I come across

to people as a bit of a machine. I don't know.

"I like the top mark because the turtle overlapped on the screen turning two

of the circles into little moon shapes. These moons have rather soft outlines, and

they would never work as ball bearings. The moons gave me the idea of softening

up the entire mark- making it more organic and less geometric. I figured out how

to have my printer make the first two designs look squashed; I liked the

comparison with the nonsquashed third design. The bottom mark is done with

CONGON. It looks like Greek jewelry that is made from those washer-like things.

"These three marks illustrate how I try to apply my mathematical mind to

soft, organic (human) problems. And Greek jewelry? I think it is an example of

math-inspired designs that serve humanistic ends."

Chapter 3

The following is not an example of a personal mark !

Why ? Because a physical likeness of the author is not the same as a model of

the author 's personality .

114

c
c

hapter 4
i rcu I ar Grids

Modeling for communication and thought

Like algebra, geometry , or any other language, the language of modeling is both

a medium for communication and a notation system that helps structure thought .

You can crystallize an idea about a shape or complex of shapes into Logo

procedures. Logo gives you a language both to name the shape and to define how

to go about drawing the shape. Once the shape is named in a procedure , that

name can be used as a shorthand for the method of constructing and exploring the

visual implications of the shape's definition .

In the preceding chapters you have seen that our visual intuitive sense is

limited in many cases. That explains why some of the images are so surprising .

Most people 's visual vocabulary is fairly rudimentary , even when it comes to

something as commonplace as polygons . Visual exploration with models can

" Language is an instrument of human reason and not merely a medium for the

expression of thought "

George Boole

" By relieving the brain of all unnecessary work , a good notation sets it free to

concentrate on more advanced problems "

Alfred North Whitehead

Circular grids

Chapter 4

116

Having explored polygons extensively , are you beginning to see the world

packed with them ? Were you able to spot and recreate in procedure forms the

polygons hidden inside the stone mason marks of Exercise 3.5? I want to use this

mason mark exercise as an example of how to go about the unpacking and

repacking of complicated , composite images . The mason marks are good ex-

amples , too , of a special kind of composite shape organization . The component

elements are all arranged around a central point . I call this class of designs

circular grids .

help increase your visual vocabulary by forcing it to describe unexpected shapes.

Have you felt visually stretched?

Unpacking and repacking shape packages

The goal of this chapter is to encourage you to take complicated designs apart in

order to find their basic elements, the building blocks. Once unpacked , a complex

design can be explored by modeling each of the component parts in turn . And once

the small -part models are completed and named, you are free to concentrate on

how to put the parts back together again, that is, how to repack the package

with which we started . Along the way , you may be able to find several

alternative ways to repack the pieces.

Do you remember the first time you took a small machine apart ? I remember

happily attacking a large , mechanical alarm clock . The pleasure came from

solving two puzzles : to separate the pieces and then to put them back together

again. And because I had seen through those puzzles , and had arranged all the

small parts carefully on a carpet, I knew that the reassembled clock was not the

same as the original .

Circular Grids

Analyzing mason marks

Let 's go through the exercise of analyzing the mason mark designs to illustrate

the usefulness of Logo shape and placement notation . The following discussion is

not the only description of what one can see in stone mason marks ; don 't be

alarmed if the work you did yourself doesn't correspond exactly to the following

illustrations . There is no single " correct" answer . But there is a proper style of

approach . The following examples are designed to show you that style.

Go back and look carefully at all the stone mason marks at the end of the

last chapter . Think about the following questions:

117

1. What shapes are used?

2. What shapes are not used?

3. Wha t shapes are used together?

4. What shapes are not used together?

5. Are individual marks symmetric ? If yes, can you see the point of symmetry ?

Are some marks partially symmetric ? (Be sure that you have a definition of

symmetry at your fingertips . Are there different kinds of symmetries ?)

6. Within any individual mark , is anyone shape repeated over and over again

in a way that might suggest recursion?

7. What are the characteristics that make all the marks alike ?

8. What are the characteristics that make each mark unique ?

9. What already written Logo procedures could be used to produce parts of the

marks ?

10. What new Logo procedures need to be designed?

Now look back over the marks and quickly jot down your answers to these

questions . Don 't mull over the words ; write them down as they come to you .

Chapter 4

Written observations

You probably noticed that

1. All the designs are composed from a few basic shapes: circles, squares, and

triangles . You can produce all of these easily with CNGON.

2. All the marks reveal a common characteristic: the orientation of the polygons

around a center. Each mark has a design symmetry "around " the center of this

theme circle. Each mark uses a limited combination of polygons . For example,

squares and circles occur together in the same mark , but triangles and squares do

not. Excepting the circle, no polygon beyond the 4-gon level is used. There are, for

example, no pentagons or octagons. For polygons centered on the circle 's center,

CNGON can be used.

3. Two polygons of the same size and shape are often overlapped to form stars .

For example , one triangle in Mark 2 is rotated 60 degrees from another , to form a

six -pointed star , while one square , in Mark 1, is rotated 45 degrees from another

to form an eight -pointed star . This is easy: use a combination of CNGONs and RTs.

4 . There are two special kinds of polygon placements within the marks that

require special attention . First , the grid placement of squares in Marks 7 and 10 ;

and second , the placement of polygons at the vertices of other polygons : for

example , the circles at the vertices of the smallest triangle in Mark 13 . You will

need two new procedures here .

5 . There are two forms of recursion that appear in the group of marks , and each

of the marks has at least one of them operating : first , the grid placement of

boxes already mentioned might be structured with a recursive procedure - the

fact that Mark 7 has twice as many boxes as Mark 10 is " very suggestive " of

118

Let's start with the recursion while your energy is high . Until recursion becomes

second nature to you , you will need a lot of concentration to understand how it

does what it does. But believe me, recursion will soon become as natural to you as

using any other form of shape description .

Look at the following four designs. Then look back at Mark 1 and 2. See how

natural some of these shape descriptors are becoming ? Do you see the kind of

recursive procedure that is needed, just by looking at these pictures?

Put your ideas into words , though , just to be on the safe side. Remember to

record your thoughts and doodles in your notebook.

Circular Grids

recursion ; and second, notice the occurrence of polygons nesting inside circles

nesting inside polygons . This nesting is called " inscribed " polygons . That is, a

polygon is inscribed , or drawn , to fit within another shape. You will see this

nested-shapes recursion in many of the marks : note the two smaller squares

nested inside the larger squares in Mark 1; also note the same kind of nesting in

the triangles of Mark 2. New procedures will be required here.

You will need new procedures for the last three points :

1. Placement of polygons at the vertices of other polygons .

2. Two kinds of recursion: nested/ inscribed polygons and grids .

3. Some special line drawers to connect certain polygon vertices.

Recursive design features

119

6. Straight lines are sometimes used to join the vertices of some of the basic

polygons - the diagonal cross inside a square - or the polygons formed by the

overlap of the basic shapes - the lines joining the intersection points of the two

triangles . New procedures here , too .

Inscribed polygons

Chapter 4

3 .J.

If.
:2;.

We need a procedure that will first draw a circle of a given size, and then draw

an NGON inside this circle. The NGON is said to be an inscribed polygon if it just

fits inside a circle , and this will be the case when the NGON has the same radius

as the circle. Next , the procedure needs to know if it should go to another level

of inscription : should it draw a circle inside the NGON just drawn and inscribe

another polygon inside this circle ? Let 's use : LEV to be the argument that

indicates the number of nested polygons -inside -circles that is required . The

procedure will have the following form :

120

Notice that a polygon has been drawn inside a circle of radius R. What is

the radius of the circle inscribed inside this polygon ? To answer this question,

we must find an expression for r in terms of R. Then we can handle the (???)

term in the INGON procedure .

Do you see that the angle e (theta) equals one-half of 360/ n, where n is the

number of sides of the polygon ? Using the definition of the cosine, we have cos e

= r / R. By putting these two expressions together and rearranging terms, we find

the needed expression:

Circular Grids

e : l (3~o/~) :; 18olvv
J1 .

(..ose :. ~

C.oSl\C()o/",,) =- ~

121

TO INGON : N : RAD : C ? : LEV

; INGON stands for ~ nscribed NGON .

; : N is the number of sides of the inscribed polygon , and

; : RAD is its radius .

; Set : C ? = 1 if you want the circles to be drawn .

; If : C ? * 1 , no circles will be drawn .

; : LEV is the level of recursion .

IF : LEV < 1 [STOP]

; To stop recursion , as usual .

IF : C ? = 1 [CNGON 30 : RAD]

; Do you want the circumscribing circle drawn ?

CNGON : N : RAD

; Inscribe a polygon inside the circle .

INGON : N (? ? ?) : C ? (: LEV - 1)

; Do INGON again with the correctly calculated : RAD and

; decremented : LEV .

END

The only problem is , what should go in the place of the (? ? ?) . This is the

radius value of the next smaller inscribed polygon in terms of the polygon just

drawn . The following little diagram should be useful as you think through this

calculation .

ultirn2

Now for the grid of squares that appears in Marks 3, 6, 7, 10, and 16. Let's go

through a turtle -walk exercise similar to that introduced to solve the CNGON

problem at the end of Chapter 1. Imagine that you are at the center of a circle of

radius : RAD and that you want to fill up an inscribed square with other squares .

How would you go about doing it?

Chapter 4

180 / nR* cosr =

lte line becomes :

:C? (: LEV- l)

The underlined expression has replaced the (???) . OK? Let's try it out .

INGON 4 100 1 2
1 on page 120 .

100 1 2 RT 45
100 a 2
design 2 on page 120..

,

CG

INGON 3 100 1 2 RT 60

INGON 3 100 a 2

; Gives design 4 on page 120 .

Grid -of-squares turtle walk

122

designGives

We can now finish up INGON. The pen

INGON :N (:RAD*COS 180/ :N)

CG
INGON 4
INGON 4

Gives

CG
INGON 3 100 1 2

; Gives design 3 on page 120 .

Circular Grids

~AD

+
~AD/2

The radius of this square equals

2. Next , consider dividing this square into four smaller squares. You could draw

these four squares by first going forward , after picking up your pen, by : RAD/ 2,

putting down your pen at position (2) and running a CNGON 4 : RAD/ 2. Then, get

yourself back to point (1) with your pen up . Turn right 90 degrees and get over to

position (3). Run another CNGON 4 : RAD/ 2 and get back to the center point (1).

Do the same for (4) and (5)

3. Ready for the recursion twist ? Suppose you want to divide the square centered

on position (2) into four smaller squares . On arriving at point (2), you would want

to draw four squares around this spot . You must go forward by an amount equal to

half the distance : RAD/ 2, do a CNGON 4 (: RAD/ 2) / 2, and then get back to (2).

You would then turn 90 deg! ees in preparation for the second square of radius

(: RAD/ 2) / 2. The remaining two squares would follow in similar fashion .

123

1. Starting at point 1, draw a CNGON 4 : RAD.

the radius of the circle in which you are sitting .

Watch the turtle read each instruction and then carry it out . The STEP command

slows the action of the turtle so that you can watch both the screen and the

procedure . Use the following diagram to follow how the different levels of

recursion are linked . This recursion diagram is similar to the one you saw when

you worked on RECGON. Remember ? If you have trouble comparing what you see

on the screen with this recursion diagram , turn your printer on to print out what

Logo is doing . Compare this printout , line by line , with the recursion diagram .

Chapter 4

4. But wait . Suppose when you were in position to draw the CNGON 4 with the

radius (: RAD / 2) / 2, you considered yourself to be in the center of a square that

should be divided again into 4 smaller squares. This is recursion .

And here is the Logo version of the words above :

deeper .

END

Another recursion diagram

STEP
SQUARES100 2

124

TO SQUARES : SIZE : LEV

; Grid maker of squares in groups of four .
IF : LEV < 1 [CNGON 4 : SIZE STOP]
; Draw a square if you wish to recurse no
REPEAT 4 [PU FD : SIZE / 2 PD -

; Get to center of a square .
SQUARES (: SIZE / 2) (: LEV - l) -

; Consider current position as center of 4

; squares .

PU BK : SIZE / 2 PO RT 90]

; Get back to center and turn 90 degrees in

; preparation for moving to the next center of

; squares .

Exploring recursing; squares

different

Circular Grids

SQUARES recursion diagram

Now , design an EXPLORE-type procedure to investigate how SQUARES operates

: levels of recursion . The following is such a procedure .at

125

PU SETXY
SQUARES

END

- 70
:SIZE

The following recursion diagram describes what "happens " after you type

SQUARES 100 2. The level of recursion here is 2. Don 't forget to type STEP.

TO SQ . EXPLORE : SIZE : Ll : L2 : L3 : L4

; To explore the SQUARES procedure at

; different recursion level and size values .

PU SETXY 70 60 PD

SQUARES : SIZE : Ll

PU SETXY 70 - 60 PD

SQUARES : SIZE : L2

PU SETXY - 70 - 60 PD

SQUARES : SIZE : L3

60 PD

: L4

TO SQUARES : SIZE :LEV (100 2)
IF :LEV < 1 [CNGON 4 : SIZE STOP]
REPEAT 4 [PU FO :SIZE/ 2 PO -

(SQUARES (: SIZE/ 2) (: LEV- 1) -
- - PU BK :SIZE/ 2 PO]")

ENO '"J)a'f./E ~ "f= - - - -

TO SQUARES : SIZE :LEV (50 1)
IF :LEV < 1 [CNGON 4 : SIZE STOP]
REPEAT 4 [PU FO :SIZE/ 2 PO -

SQUARES (:SIZE/ 2) (: LEV- 1) -
PU BK :SIZE/ 2 PO]

TO SQUARES : SIZE :LEV (25 0)
IF :LEV < 1 [CNGON 4 : SIZE STOP]
REPEAT 4 [PU FO :SIZE/ 2 PO -

SQUARES (: SIZE/ 2) (: LEV- 1) -
PU BK :SIZE/ 2 PO]

ENO

Chapter 4

2 3 produces the following diagram :RT 45 SQ. EXPLORE 80 0 1

More complicated grids

Suppose you would like the SQUARES procedure to do something more

complicated to the squares it gets around to drawing at the lowest recursion

level . An example might be to put a cross in each box . The following procedure

draws such a cross, but how should it be incorporated into SQUARES?

TO CROSS : SIZE
REPEAT 4 [FD : SIZE BK : SIZE RT 90

We will want the cross made just after a square is drawn , so that they both use

the same size value . That means that CROSS is placed just after CNGON 4

: SIZE in SQUARES. The following revised SQUARES procedure , called

SQUARES. x , incorporates CROSS. Changes from or additions to the SQUARES

procedure are underlined . You might guess that any number of alternative pro -

cedures could replace CROSS. A circle drawer (CNGON 30 : SIZE) , for example.

126

END

Circular Grids

TIPGON is a building block procedure that fits nicely into others . On the

page after next are a few examples of how TIPGON can be so used . You should be

able to reconstruct all of these quite easily. By inspection ?

STOP]
-

(: LEV- l)

END

: DIST RT :ROT PD
: N :RAD
: ROT BK : DIST PD

127

CROSS :SIZE

90]

turtle ' s original heading .

TO SOUARES . X : SIZE : LEV

IF : LEV < 1 [CNGON 4 : SIZE

REPEAT 4 [PU FO : SIZE / 2 PO

SQUARES . X (: SIZE / 2)

PU BK : SIZE / 2 PO RT

TO

.

,

.

,

.

,

; the

PU FD

CNGON

PU LT

END

TIPGON :N :RAD :DIST :ROT
To place an n- sided polygon of radius :RAD, at a distance
:DIST from the current turtle location .
:ROT is ~ ation angle of the polygon is relation to

The diagrams on the next page are examples of fancy grid recursion . They

exhibit some of the flavor of stone mason marks as well . You should be able to

reconstruct them yourself .

Placement of polygons on other polygons

RECGON was one procedure for doing this kind of thing , but now let ' s assemble a

procedure that will put any kind of polygon at the tips of any other polygon . But

maybe we can break this job down into something simpler than RECGON . All we

really need is a procedure that will place and orient a CNGON at some defined

distance from the turtle ' s current location and then return the turtle to its

starting place . It ' s getting easier to use the notation of Logo to talk about a new

shape placement than it is to use words . Here it is :

Mason mark designs from squares

/ / - - - - - ~

" "_ ~- - - --...../

Chapter 4

,...--

-..
..,

..

128

Circular Grids

Some TIPGON-generated figures

129

Chapter 4

Special line procedures

Let 's overlap two similar NGONs to form a regular star with 2*:N points . The

trigonometry needed to find the rotation between the t \.A1O NGONs is easy : the

angle between points of the composite star will be 360 divided by the number of

points or 360 / (2*:N). So the star operation is :

CNGON :N :RAD
RT 360/ (2* :N)
CNGON :N :RAD

An example . Make a six -pointed star from two triangles of radius 100:

CNGON 3 100
RT 360 / (2* 3)
CNGON 3 100

The star produced is top left one on the next page.

The bottom left figure is the star with the intersection points of the two

triangles connected. The top right figure shows the star again, but now with the

star points opposite each other joined . The bottom right star combines the

connections of the top right and bottom left ones.

The exercise for you is to think about the trigonometry needed for this

exercise and then to design a procedure that will draw these two kinds of lines

for any star drawn from a composite of two similar polygons . Try out your own

ideas before going any farther . Here is my solution ; I 've called the procedure

STRIPES:

130

Circular Grids

bottomexamples

3.

Y.2.

TO

IF :L2? =

END

left star was generated by :from me. TheHere are two

131

STRIPES : N : RAD : Ll ? : L2 ?

; : N is number of ngon ' s sides and : RAD is radius .

; If : Ll ? = 1 draw lines joining the NGON intersection

; points .

; If : L2 ? = 1 draw lines joining opposite star points .

IF : Ll ? = 1 [RT 90 / : N

REPEAT : N [CNGON 2 -

(: RAD * COS 180 / : N) / (COS 90 / : N) -

RT 180 / : N] -

SETH 0]

1 [REPEAT : N [CNGON 2 : RAD -

RT 180 / : N] -

SETH 0]

You might want to verify that STRIPES works in a number of situations .

Chapter 4

CNGON 3 100
RT 360/ (2* 3)
CNGON 3 100
STRIPES 3 100 1 0

The top right star came from this :

CNGON 3 100
RT 360 / (2* 3)
CNGON 3 100
STRIPES 3 100 0 1

The bottom right star combines the top right and bottom left stars.

That 's all . You should now be able to generate most of the stone mason

marks given at the end of Chapter 3 using the procedures that have been

discussed in this chapter. Want to try a few ?

TO MARK. 13 : SIZE
INGON 3 : SIZE 1 2
RT 180 (INGON 3 : SIZE 0 2) LT
REPEAT 6 [TIPGON 30 (:SIZE/ 2)

RT 60]
STRIPES 3 : SIZE 1 1

180
(:SIZE/ 2) 0

132

END

Circular

Here's another . Notice that this mark uses both the grid recursion and the

inscribed polygon recursion patterns:

The procedures we have just looked at, MARK. 13 and MARK. 16 , are not very

general . They can each produce only one design . Their only generality is an

ability to produce fixed designs of different sizes. That isn't very interesting .

What about designing a more general mark procedure that would include an

additional argument for controlling the shape of the design produced ? Exercise

4.6 will ask you to design a generalized mason mark procedure with at least 3

arguments . Here is a preview of such a generalizing approach.

The following procedure was designed to draw either Mark 1 or Mark 2. I

also wanted to see a mason mark figure based on pentagons and hexagons. I

therefore added a second argument , : N, that would control the shapes selected

to construct the mark . This new procedure thus has an argument that determines

the overall shape as well as one for setting the size of the mason mark .

'Grids

: SIZE
: SIZE
[SQUARES : SIZE 2 RT 45]
: SIZE 0 1

[INGON 4 : SIZE 0 2 RT 45]

Generalized Gothic stone mason mark procedures

133

TO MARK. 16
CNGON 30
REPEAT 2
STRIPES 4
REPEAT 2

END

Chapter 4

It is often interesting to see what "happens" to designs produced by a Logo

procedure as the procedure 's arguments are given more and more extreme values.

Sometimes designs produced with such extreme value arguments are very boring .

But other times one finds designs that are totally unexpected and very exciting .

Here is a start at my generalized mason mark :

1

And here is an EXPLORE-type procedure that will show you how G. MARK-

produced design change with changing : N values:

TO M . EXPLORE : SIZE : Nl : N2 : N3 : N4

; To explore the G . MARK procedure at different : N values .
PU SETXY 70 60 PD

G . MARK : Nl : SIZE

PU SETXY 70 - 60 PD

G . MARK : N2 : SIZE

PU SETXY - 70 - 60 PD

G . MARK : N3 : SIZE

PU SETXY - 70 60 PD

G . MARK : N4 : SIZE

END

The following diagram is produced with

M.EXPLORE 50 3 456 .

134

TO G.MARK :N : SIZE
CNGON 30 : SIZE
INGON :N : SIZE 0 2
RT 360/ (2* : N)
INGON :N : SIZE 0 2
LT 360/ (2* :N)
STRIPES :N :SIZE 1

END

Circular Grids

135

Comment : the extreme values, : N = 6, for example, aren't very interesting .

The figure becomes confused and muddied with too many lines . Here is the

reason why all of the stone mason designs in the illustrations given at the end of

Chapter 3 limited their ngons to a max of n = 4, squares. Circles seem to be a spe-

cial case. The G . MARK based on the hexagon above does suggest some work in the

following direction . Spider webs, maybe?

Must we use a straight line ? Suppose we want the vertices to be connected

with a line whose quality is different from that of a straight line . Different line

qualities could mean wavy , jagged , or dotted lines . Or maybe we might decide

that we want the vertices of a polygon to be joined together with a special

shape . Why not remove the FD edge command from CNGON and replace it with

some other procedure that draws a new shape between the vertices .

Once whatever shape the new procedure draws between one vertex and the

second vertex facing the same

The new procedure must operate exactly like

ending state . In other words , the

state in which it was found , and the

next is completed, the turtle must be placed at the

direction it faced at the first .

FORWARD in terms of the turtle 's starting and

turtle must be left in the same heading

distance between the two vertices must remain equal to : EDGE. If this were not

true , we could not replace the FD : EDGE command with our new procedure .

Why ? In fact, we can replace FD : EDGE with any procedure as long as it follows

FORWARD's starting and ending conditions . Are you happy with this?

Chapter 4

The quality of polygon lines

Here is a simple pentagon produced by the CNGON procedure . Look at the five

They are straight lines and they connect the vertices of

11

136

edges of this polygon .

the pentagon together .

Circular Grids

Stars

Let's consider drawing stars. Look at the sketch below . A star is a polygon with

a different quality of edge. Instead of a straight -line edge, the star has an edge

with a "kink " in it . If we could write a procedure to draw "kinked " edges that

follow the beginning and ending state conditions of FD, we could exchange the FD

: EDGE in CNGON with the kinked line procedure . This exchange will create a

new gon-drawing machine called STARGON. If we are careful, STARGON will be a

more general form of CNGON because it will draw stars as well as polygons .

~

Can you state the conditions necessary for us to replace one part of a

the parts relate ? How is this

~ 0

0

"\:
' t

:~ P&' ~

137

procedure with an alternative part ? How must

business like the notion of state transparency ?

begins

2. The first thing that STAREDGE must do is to turn right by the angle labeled

: TANGLE (for lop ~ngk) at (2). Don 't worry about the calculations yet; we can

work those out later .

Chapter 4

Turtle walk through the staredge

1. The turtle

138

Let 's call the new procedure that will draw the kinked line STAREDGE.

Before we do a turtle -walk description of the staredge, let 's decide how we will

characterize its major feature, kinkiness , in terms of an argument called : KINK .

Suppose we say that if : KINK = 0, there will be no kinkiness to the staredge and

so the star drawn will look exactly like a polygon . That 's fine : a star with no

kinkiness is a polygon . On the other hand, if : KINK = 1, then the kink in the

staredge will extend down to the center of the figure . The shape of this star will

look like the spines of an umbrella . A : KINK of .5 should produce something

midway between a polygon and an umbrella frame.

at position (1). It is facing the next vertex at position (7).

3. Now, go forward by the amount labeled : SLOPE. (3)

4. N ow, turn left by the angle labeled : BANGLE (for Qottom @g1g) at (4).

5. Go forward by the : SLOPE. (5)

6. Turn right : TANGLE. (6)

7. The turtle is now in position (7). STAREDGE has moved the turtle from vertex 1

to 7, and the turtle heading at 7 is the same as it was at 1. This corresponds to

what FORWARD accomplished, so we can exchange the two procedures.

Circular Grids

..
 .
.

..
 .

.
..

n
tI

jc/
)
I-3

:I:
tx:J

~

:l;.r
t-t

:l;.r
1-3

1:J

n
Z

O
Z

G)

I::::

G)
t"C

J
G)

tx:J

......
t-t

tx
:J

t-t

~
tx:J

tx:J

:::r. 0 :='

II
 I
I

II
 I

I
II

c
n

Where shall we carry out these calculations ? We could place them inside the

new procedure STAREDGE. But this wouldn 't be very efficient since the math

needs to be done only once, not every time a STAREDGE is drawn . So let 's place

the calculations at the start of the procedure STARGON. Here are the two new

procedures.

Staredge calculations

2* :RAD*SIN 180/ :N
:KINK* :RAD*COS 180/ :N
ARCTAN :HT :EDGE/ 2
SQRT (SQ (:EDGE/ 2) +
2* :TANGLE

SQ :HT)

Putting STARGON together

139

Here are the calculations that will be needed . I 've written a supporting

procedure called SQ that squares its argument ; your own version of Logo may

already have this command. SQRT is my Logo's command for square root .

I am pleased that this project will encourage you to review a little more

geometry and trig . You will need to remember the arctangent and its associated

ARCTAN command ; we use this to calculate the angle : TANGLE. Also , you might

recall the Pythagorean theorem : in a right triangle , the square of the length of

the hypotenuse equals the sum of the squared lengths of the other two sides. We

use that to find the : SLOPE.

TO SQ :A
; To square a number .
OP :A* :A

END

Chapter 4

TO STAREDGE
RT :TANGLE
FD :SLOPE

:TANGLE: SLOPE

SQ : HT)

the values that STAREDGE

LT 2* : TANGLE
FD : SLOPE
RT : TANGLE

END

TO STARGON :N : RAD :NOTCH
; Centered star exercise .
(LOCAL " EDGE " HT " TANGLE " SLOPE)
MAKE " EDGE 2* :RAD* SIN 180 / :N
MAKE " HT :NOTCH* : RAD* COS 180 / :N
MAKE " TANGLE ARCTAN : HT : EDGE/ 2
MAKE " SLOPE SQRT (SQ (: EDGE/ 2) +
; These MAKE commands calculate
; will use below .
PU FD :RAD PD

RT 180 - (90* (: N- 2) / : N)
REPEAT :N [(STAREDGE : TANGLE
LT 180 - (90* (: N- 2) / :N)
PU BK : RAD PD

END

: SLOPE) RT 360/ :N]

Global and local variables

Notice that I have made the staredge variables all local variables . We don 't

need the value of these staredge calculations outside of STARGON. Do you

remember the difference between local and global variables ? Global variables

have an existence outside as well as inside the body of the procedure that

created them. These variables never go away, in fact, until they are erased. The

command NAMES lists all global variables currently in your workspace and

EDNAME allows you to edit a specific variable . Check your Logo language manual

to verify these commands in your own Logo dialect.

Local variables , on the other hand , exist only inside the procedure that

defines them . A local variable is, however , available to any procedure that is

used within the body of the procedure that defined the variable .l

1. Most traditional Logos, including the dialect used in this book , apply this
approach, but some recent implementations such as Coral Object Logo favor an

140

Circular Grids

alternative approach in which local variables are available only to the
procedure that created them and not to any others. Your Logo manual should
describe the method it uses to define the range or "scope" of local variables . If it

applies the second approach , you will need to make some (relatively simple)
modifications to the procedures given in this book.

Logo isn't very good at "number crunching ." Because Logo is so slow with

mathematical calculations, structure your procedures to calculate as few times as

possible. Group the "dirty " math work in one place using MAKE commands, so

Logo can go on to what it does most quickly : moving the turtle about the screen. If

possible, LOCALize all the MAKE-created variables .

A look at STARGONs with different : KINK values

My recommended way to explore a new procedure is to design an EXPLORE-like

procedure . Each of the following diagrams shows a set of five stargons . The

value of the : KINK factor is noted on each individual stargon .

Note that the stars produced with a kink value greater than 1 are pulled

" inside -out ." Why is this ? Look carefully . Perhaps you would like to use the

STEP command to slow the turtle down as it draws one of these inside - out things .

141

Chapter 4

142

STARGON-produced designs

Below are several designs that explore the : KINK argument effect on STARGON -

produced shapes . I won ' t give you the actual procedure used to create these

designs , but it has much in common with CONGON of Chapter 3 . Re ~ ember ?

Circular Grids

143

Fractalgons

Chapter 4

- - _/ ! \ \ _----

And here is a triangle with ordinary straight sides:

What if you now replaced the straight line sides with the new shape? And

after you have done this , what if you could replace all the straight line

elements within the new shape with a smaller version of the new shape? And

then, what if you could replace the remaining straight line segments with

smaller versions of the shape . . . What is this? Recursion, again.

144

Put off for a moment asking what a fractal might be. Instead , consider yet

another way of altering the quality of the polygon edges drawn by CNGON. .

Recall how we built STARGON from CNGON in order to draw kinked lines

between polygon vertices . Here is a turtle -walk description of another line

shape that can replace FORWARD in CNGON: take the distance between vertices

and call it : D IS T. Now have the turtle go forward by one-third of : D IS T and

turn left 60 degrees. Then go forward another one- third of : D IS T and turn right

120 degrees. Now go forward another : DIST / 3, turn left 60 degrees, and finish up

with FD : DIST / 3. Here is the shape of this new kind of line :

Circular Grids

145

Chapter 4

FRACTALGONS: a new recursion machine

180/ :N

REPEAT :N [FRACTAL :EDGE :LEV :DIR
RT 360 / : N]

LT 180- 90* (:N- 2) / :N
PU BK : RAD PD

END

:DIR

:DIR

:DIR

:DIR

146

TO FRACTALGON : N : RAD : LEV :DIR
; If : DIR = 1 turn outward .
; If :DIR = - 1 turn inward .
LOCAL " EDGE MAKE " EDGE 2* : RAD* SIN
PU FD : RAD PD
RT 180- 90* (:N- 2) / : N

Look closely at the following two procedures . You should have a feeling for

what is going on as soon as you scan the lines . But what will that argument : DIR

do ? Notice , too , that the kind of recursion used in FRACTAL is not exactly the

same as that used in RECGON . There are four places within the procedure

FRACT AL where FRACTAL " calls " itself (makes use of recursion) . Make a

recursion diagram for yourself and use STEP to verify that your recursion

diagram arrows are correct .

Can you now give a definition , based on FRACTALGON , of a fractal design ?

Of a fractal ? Try . What is the quality of the edge line in a fractal design ?

TO FRACTAL : DIST : DEPTH : DIR

IF : DEPTH < 1 [FD : DIST STOP]

FRACTAL (: DIST / 3) (: DEPTH - l)

LT 60 * : DIR

FRACTAL (: DIST / 3) (: DEPTH - l)

RT 120 * : DIR

FRACTAL (: DIST / 3) (: DEPTH - l)

LT 60 * : DIR

FRACTAL (: DIST / 3) (: DEPTH - l)

END

Circular Grids

SomecuriousFRACTALGONS

147

Chapter 4

Observations

Have you noticed that most of the designs in the first three chapters have been

"circular " ? These circular patterns reveal a symmetry based on a central point ,

and that 's why I 've called them circular grids.

There is one final example of circular grids in the chapter . It is another

example of how a complicated figure can be unpacked into its components and

then restructured . This example shows how a generalized model of the basic

component can lead to a wide variety of recomposed images based on the theme

of the original . While all the images share the same original characteristics ,

they are surprisingly different in feeling .

Nephroids

"Nephroid " means kidney -shaped. It is a nice example of a complex circular

grid .

148

Look carefully at the following diagram . Can you decompose the design

into its polygonal components as you did with the stone mason marks? Could you

draw a nephroid on a drawing board with a straight edge and compass? Most

important , could you do a turtle -walk scenario? That walk might begin to form

in your mind as soon as you start scanning the design with your eyes. . .

Circular Grids

Nephroid walk scenario

A

tEroJTErz.

 Av(",~ ()~ u ' TTL:!E: CI ~c.LE: = : ~ D *" <; ,.J 9

Look at the right -hand diagram above. The thing that must be calculated

is labeled " radius of the circle to be drawn ." You know the : RAD of the big circle,

and you could probably figure out the angle 8. If you know these two things , then

trigonometry will again supply you with help . The radius you need is simply

: RAD* SIN e. The same simple relationships are useful over and over again.

We can use TIPGON to move out from the center (1) to a position on the

circumference, draw the circle, and then move back to (1). You can then turn the

turtle at (1) an appropriate amount in preparation for using TIPGON again.

149

Here is a little sketch that might help . Imagine a circle whose center is labeled

(1). Begin to walk along the circumference of this circle starting at point (2) .

Stop at equal intervals along the circumference (3, 4, 5, ...) and draw a circle -

one at each stopping place - whose center is your current position . The radius of

each circle will be such that its circumference will just touch line AB , the

diameter of the big circle that you are walking on . How can you calculate the

radius of each of the circles that you must draw ?

What about that angle e? You need that in order to calculate the radius of

each of the circles that TIPGON places out there on the circumference of the big

circle. You can use the command HEADING. HEADING gives you the turtle 's current

angular orientation as measured in degrees from the straight -up position .

Straight -up is 0 degrees; pointing toward 3 o'clock is 90 degrees; straight -down

is 180 degrees; and pointing toward 9 o'clock is 270 degrees. The line AB

indicates the straight -up position . SO HEADING will give you the angle you need

to calculate the radius for each circle that must be drawn . What about tilting

the design with respect to the line AB? Let : TILT represents the degrees of

clockwise tilt .

Here it is:

stars .

Chapter 4

TO NEPHROID

; : CIRC is

; how many

; : TILT is

; horizontal .

RT : TILT

REPEAT : INC

: TILT

of the big circle .

turtle stops along

rotation of figure

: INC specifies
the circumference .
from the

[TIPGON 30 -
(:CIRC*SIN (HEADING
RT 360/ : INC]

:TILT :CIRC 0

LT :TILT
END

Generalized nephroids

nephroids built up from And what will that look like ?

150

: CIRC : INC
t-hp r ~rl ; ']~
times the
clockwise

Let's consider producing a series of nephroid designs based on a more generalized

model of the component part . Instead of circles, let 's use STARGONs. With

STARGONs we can still generate circle-based nephroids , but we can also explore

On the next page are a few nephroids . Because the screen resolution is

limited , these nephroids look as if they had been knitted rather than drawn .

Circular Grids

151

Chapter 4

Unpacking and repacking image packages

First, let 's extend TIPGON to manipulate STARGONS instead of CNGONs. Call

the extension TIP . STARGON.

TO TIP . STARGON :N :RAD :KINK :DIST :ROT
; To place an n- sided stargon of radius :RAD and
; kink :KINK, at a distance :DIST from the current
; turtle location . :ROT is ~ ation angle of the
; in relation to the turtle ' s original heading .
PU FD :DIST RT :ROT PD
STARGON :N :RAD :KINK
PU LT :ROT BK :DIST PD

END

Now , we can insert TIP . STARGON into an extended NEPHROID, called

STAR.NEPHROID.

TO STAR. NEPHROID
:CIRC is the

: N : KINK : TILT

big circle .
stops alonq

: INC specifies
the circumference .

.

,

.

,

.

,

:TILT

LT :TILT
END

The images of this chapter illustrate the power of decomposing complex

patterns into simpler ones , and these images recapitulate the ideas of the

chapter better than words . Now it 's your chance to extend these notions into

more challenging areas .

152

how

: N is number

kink

timesmany

: CIRC : INC

radius of the

the turtle

of sides of component stargons with

; TILT is clockwise rotation of figure:KINK ..

,

; from the horizontal .

RT : TILT

REPEAT : INC [TIP . STARGON -

: N (: CIRC * SIN (HEADING

: KINK : CIRC 0 -

RT 360 / : INC]

 -

Circular Grids

STAR . NEPHROIDs

153

More STAR . NEPHROIDS

Some curious things seem to be happening . Some of these images are not

symmetric . The left half is not the same as the right half . Why is it that some

images close and others do not ? If you have forgotten the term closure , look at

the PIPEGONs of Chapter 2 .

Chapter 4

154

The nephroid on page 148 is composed of many individual circles. (Can you count

the actual number of component circles from the design itself ?) The method for

locating and drawing each of these component circles was described on the last

few pages of this chapter.

Many other complex designs can be built up entirely from circles (or other

polygons). The cardioid (heart shape) is another example of such a composite

design. It is illustrated on the next page. Can you suggest how the cardioid is

generated ? Note that both the nephroid and the cardioid seem to be three-

dimensional , at least at first glance. Examination , however , will show that the

" depth cues" are ambiguous and not totally consistent with " real" world

perspective . This kind of ambiguity , though , can add interest to an otherwise

straightforward , geometric design.

Circular Grids

Exercises

There are ten exercises this time . The first seven involve more work with

circular grids , while the last three branch into the worlds of rectangular and

random grids . There are fewer hints included because you should have the basic

skills now to be your own designer . Try to create designs that are as different

from the ones in this chapter as possible.

Exercise 4.1

155

Chapter 4

Cardioids

156

Circular Grids

157

Now look at the following three designs . These seem to illustrate concentric

spheres whose fronts are transparent but whose backs are opaque . What is going

on here ? Are the 3 - D methods used to draw these globes similar to those used in

the nephroid and cardioid designs ?

Dream up some elegant Logo procedures to create designs inspired by

nephroids , cardioids , and these transparent spheres .

the cosmos. In Hinduism and Buddhism diagrams called mandalas are used to

illustrate the structure of the universe and the place of the observer within it .

They are also used in meditation and visualization exercises. Two examples are

shown below . I would like you to genera te a series of mandalas, each based on

aspects of your own personal cosmology. Be ready to "explain " your diagrams .

Chapter 4

Exercise 4 .2

I once asked you to design a personal mark . Now we move from the individual to

158

Circular Grids

Exercise 4.3

Exercise 4.4

159

While we are thinking about the cosmos , take a look at the following . Here are

the standard glyphs for the twelve signs of the zodiac , drawn by me . The series

begins at (1) Aries and runs through (2) Taurus , (3) Gemini , (4) Cancer , (5) Leo ,

(6) Virgo , (7) Libra , (8) Scorpio , (9) Sagittarius , (10) Capricorn , (11) Aquarius ,

and (12) Pisces . Can you redesign each of them into the form of a circular grid ?

Simplify each symbol to the point beyond which it would lose its visual

identity . You may want to borrow a book on astrology to read the traditional

meanings of the signs so tha t you can incorpora te them into your designs .

cP b n @

1 2 3 4

cfJ rrQ ~ (YY) 1 \

5 6 7 8

I ' V ; 5 ; : ~ : : : ~ *

9 10 11 12

Playing cards offer another set of designs that can be structured as circular grids .

You might be intrigued to redesign the standard card suits : diamonds , clubs ,

hearts , and spades . Or maybe the face cards of King , Queen , Jack , and Joker . But

these images may not be as challenging for you as the face cards of the tarot

deck . (You should be able to borrow a deck of Tarot cards from the same person

who lent you the astrology book for Exercise 4 . 3 .) Listen to these wonderful face

Design a generalized Gothic stone mason mark that has three arguments . One of

these arguments should control the size of the design and the other two should

control the shape. Don 't limit yourself to the examples already shown ; produce

a series of designs that could be used for late-twentieth -century cathedral

building .

Exercise 4.7

Exercise 4.6

We didn 't spend much time on fractals in this chapter . Go back and look at the

FRACTALGONs. Can you dream up some fractals of your own ? We will look at

fractals again in the exercise section of Chapter 7.

160

Chapter 4

card names : Magician , High Priestess , Empress , Emperor , Hierophant , Lovers ,

Chariot , Strength , Hermit , Wheel of Fortune , Justice , Hanged Man , Death ,

Temperance , Devil , Tower , Star , Moon , Sun , Last Judgment , World , and finally ,

The Fool .

Can you design a circular grid icon for one or more of these cards ? Keep each

of your designs as sim pIe as possible .

Exercise 4 . 5

The standard clock face is a circular grid . Redesign it with symbols rather than

numbers . Remember to keep track of seconds , minutes , and hours . But you may

want to change the whole system of reckoning time . . .

Circular Grids

Exercise 4.8

Design a Logo procedure that will put a shape into a rectangular grid . You

should be able to define the number of rows and columns that the procedure will

use and the distances between them . You might want to be able to change the

shape that goes into this grid as well . Make sure your rectangular grid can be

placed at different starting places on the screen .

Remember : the secret to success is always to go through the sketch / turtle

walk / more sketches scenario . Here is a little design that will get you started on

your walk . Break up the tasks into sections , write a Logo procedure for each, and

put the sections together into a master procedure that controls the action .

*- =. Sr\APE-

Exercise 4.9

Design a procedure that will place a certain number of STARGONs randomly on

the screen (a random rectangular grid). Look up the RANDOM command in your

Logo language manual and carry out some visual experiments with it . Try to say

something about how you feel when you look at the "designs" produced by your

random machine.

161

'2. =. tJv~ ?>~ or::
2.owS

G :: .JlJ ~ ~'6l2- Dr:

CoL\.At-"\ ,JS

Chapter 4

Exercise 4.10

The end of the chapter at last

Sometimes people think that Logo procedures must be complicated to be good.

Wrong . Go back and look at NEPHROID; it really has only one line . Here are two

rectangular grid procedures that are short and surprising . They should get you

into shape for Chapter 5.

color ,

REPEAT 2 [FD : SIZE RT 90]

162

ZIP : SIZE* :GROWTH
END

: GROWTH

Piet Mondrian was a painter who specialized in rectangular grids . Find one or

two postcards, or small reproductions , of Mondrian 's work that you like . The

portability is important because I want you to pin them up over your desk or

work space. Now , spend a lot of time looking at these Mondrians . Can you

characterize, very roughly , the grid themes of your Mondrian examples?

Can you translate your characterization of Mondrian grid themes into a

Mondrian model?

TO ZIP : SIZE : GROWTH

; Set your pen to the reversing
; and try ZIP 10 5 .
REPEAT 2 [FD : SIZE RT 90]
ZIP : SIZE + : GROWTH : GROWTH

END

TO ZIPM : SIZE : GROWTH

; Set your pen to the reversing color ,
; and try ZIPM 10 1 . 05 .

Chapter 5
Rectangular and Random Grids

"Teased by the crisscross of the world ."

John Galsworthy

Placement, motif , and symmetry

By now you should have an appreciation for the power of visual models to aid

your thinking about shapes. Simulating stone mason marks encouraged you to

think about clusters of shapes and their relative placement . In these mason

mark designs, placement was carried out in reference to a single point that

became the center of the final composition . Often , an arrangement of objects

around the center was repeated to create a special kind of balanced figure , a

symmetric one. But what is symmetry ?

Let 's be as simple as possible about this notion . To say that a design is

symmetric means that each part of the design has the same organization as some

other part . It is the repetition of parts that creates a certain balanced quality in

the whole . All balanced designs, however , are not necessarily symmetric . Look

back at the Delaunay machine in Chapter 3 for an example of balance without

symmetry . Can you imagine a design that is partially symmetric or partially

not?

Specifically , symmetry describes a correspondence in size, shape, and

relative position of parts in reference to a dividing line , or median plane, or

Chapter 5

A small review of list mechanics

The first example of rectangular symmetry will be taken from Exercise 4.8. This

problem asked you to design a generalized rectangular -grid machine . But first

we will need to review some Logo list -handling mechanics in preparation for the

approach I would like to take to this problem . Please read the list section in

your Logo manual , and I 'll quickly go over the most important list operations .

164

about a center or axis.

Circular symmetry is a special form of design balance in which the

correspondence of parts is about a central point . Look back at the stone mason

marks you produced in Chapter 4. How would you describe the nature .of the

circular symmetry exhibited in them? Look , too, at the designs you made to

represent your own character in the personal mark excursion, Exercise 3.6. How

much symmetry do you find there? We know something of balanced per-

sonalities, but what would a symmetric character be? Put your comments in your

notebook.

This chapter will investigate another form of balance- rectangular

symmetry . Here the correspondence of elements will be relative to the rows and

columns of a rectangular grid rather than to a central point .

Let me have one last word about symmetry before we move on to modeling it

explicitly . Symmetric designs can be viewed on two levels . We can divide the

composite design into the motif and the rule of repetition. For example , look

back at two symmetric images in the last chapter- STARGONS and NEPHROIDs.

The STARGON motif is the kinked line and the repetition rule is the machinery

of CNGON. In the nephroids , the motif is the circle and the repetition rule is

stated as the last line of the NEPHROID procedure (see Chapter 4).

Lists are collections of Logo elements enclosed by square brackets []. Be careful

not to confuse these square brackets with two other kinds of brackets available

on most computers : round brackets () and curly brackets { }. Round brackets are

usually called parentheses.

emen

Rectangular and Random Grids

List definition

Here are some examples of lists that contain one or more elements that are

not themselves lists :

[JIM]
[JIM CLAYSON]
rlOO 200 3 - 201

Lists may contain elements that are themselves lists . That sounds a bit

recursive, doesn't it ?

[REPEAT
[[[MIT]

4 [FD 25 RT 90]]
[[AMERICAN COLLEGE IN PARIS]

Lists may also contain no elements. These "empty lists " are very special

beasts, and we may find them useful later on:

[

..
..

.

The following list is not empty.

empty list :

It has two el .ts, each of which is an

[[

L-
.I

]]

165

[CHICAGO]
[PARSONS]]]

[LONDON]]

-
[JIM LOOKS 85 BUT ACTS 16]
[STARGON 4 40 . 5]
[FD 100 RT 45 FD 100]

Chapter 5

The value of a variable can be a list as well as a number or a word .

Values of variables can be lists

is a list .

Let 's design a procedure to carry out the following tasks :

Ask the user to type a special x-y screen location on the keyboard .

TO GIVE . PT

; To create a global variable named
; : POINT whose value will be a list

; containing the x and y values typed .
PRINT [Give the x and y values of the
MAKE " POINT READLIST

END

point]]

Notice that the PRINT command can be used to print a message on the

screen. The message to be printed must be a list , but the outer brackets will not be

printed .

Type GIVE . PT and it will talk to you by printing the message: "Give the x

and y values of the point ."

You will notice another new command , READ LIS T, on the line after the

PRINT statement . When Logo arrives at a line that contains a READLIST

command , Logo will wait until something is typed on the keyboard . Whatever

166

MAKE " JIM 21

; Variable ' s value

MAKE " JIM " HAPPY

; Variable ' s value

MAKE " JIM [STARGON

; Variable ' s values

Th ~ READLIST construct

Put the two numbers typed into a list .

Make this list be the value of a global variable .

is a number .

is a word .
5 50 . 5]

Rectangular and Random Grids

Taking individual elements out of a list

it .

There are many list manipulation commands in Logo, and you should review

them in your own language manual . We will discuss only a few of these

commands here . FIRS T list returns the first element of that list ; LAS T list

returns the last element; BUTFIRST list returns the list with its first element

gone; and BUTLAST list returns the list with its last element missing . Some quick

examples :

is typed is placed

location of the word READLIST .

The line MAKE " POINT

to be carried out :

within a single list , and this list is made available at the

READLIST, causes the following three operations

SETXY : POINT

167

No . We have to take the numbers out of the list before the SETXY command is

happy . SETXY needs two arguments, not a single list that has two numbers inside

1. Logo waits until something is typed (for example, 100 200).

2. Logo puts whatever has been typed into a list (for example, [100 200]).

3. Logo creates a global variable named : POINT and makes its value equal to

the list made available by READLIST (for example, typing : POINT would now

give [100 200]).

Try the procedure . Type GIVE . PT, type in two numbers, and check to see if a

variable called : POINT has been created and given the values you typed .

Now , let 's send the turtle to the screen address that is now stored within the list

named : POINT. You might think that the following should work :

Chapter 5

These commands can be used in combination :

FIRST [A
LAST [A B
BUTFIRST
BUTLAST

B C] returns A

C] returns C

returns

returns

[A B C]
[A B C]

[B C]
[A B]

FIRST BUTFIRST [A B C] returns B
LAST BUTLAST [A B C] returns B

168

Two final commands before we send the turtle off to : POINT . Sometimes you

don ' t know how many elements there are in a list named : JIM . COUNT : JIM

returns the number of elements in the list .

Finally , suppose you have a list with many elements and you want the

fifth one . You could say : FIRST BF BF BF BF : JIM . But there is a more

concise command : ITEM 5 : JIM returns the fifth element of : JIM . Be careful

you don ' t do something like this , though : ITEM 10 [PARIS] . Why ?

So let ' s send the turtle off to that location stored as the list : POINT .

TO GO . PT

; To send the turtle to the x - y position

; stored as the list value of : POINT .

PU

SETXY FIRST : POINT LAST : POINT

PD

END

Putting several Logo elements into a list

A single example will make the point .

SENTENCE [A B] [N M] returns [A B N M]

SENTENCE 100 - 50 returns [100 - 50]

Look up SENTENCE in your manual and compare it with the command LIST .

Carry out a few experiments to see for yourself how they are different .

used the story board approach to structure the rectangular grid exercise.

Rectangular and Random Grids

169

While you have the manual in front of you , take a peek at LPUT and FPUT .

How are they different from SENTENCE and LIST ? These list manipulators may

seem a bit ponderous at first , but you will soon get a firm , visual sense of how

they work . And that will help you decide when they are useful .

Regular rectangular grids

Now we can get on with Exercise 4.8. " Design a Logo procedure that will put a

shape into a rectangular grid . You should be able to define the number of rows

and columns that the procedure will use and the distances between them . You

might want to be able to change the shape that goes into the grid as well . Make

sure your rectangular grid can be placed at different starting places on the

screen ."

Turtle - walk sto ~ boarding

As usual , the best way to approach a complicated Logo problem is to do a turtle -

walk diagram . A turtle -walk diagram is similar to the story boards used to plan

TV and cinema advertisements . The story board is a series of small , sketched

cartoons that illustrate the major events to be covered in the film . Each

individual cartoon is accompanied by a few written comments . Sounds like what

we have done with turtle walks : sketch the important " events " and comment on

them in words .

On the next page is an example of how an illustration and design student

Rectangular and Random Grids

Descriptions of the story board cartoon screens

171

" Cartoon A indicates the preparation that must be carried out before the grid is

started . The screen must be cleared and the GET . PT procedure run to define the

upper -left -hand-corner starting point of the grid . Somehow, the shape notation

of the little figure that will make up the grid needs to be done here, too. I don 't

yet know how to do that, though , so I 'll just assume that something , maybe a

variable called : MOTIF, 'holds ' the necessary shape notation . GO. PT puts the

turtle at the first grid position .

"Cartoon B shows the drawing of one individual figure at any point in the

grid . I 'll assume that this can be done by using whatever is inside : MOT IF . My

notation will be : PAINT : MOTIF . (Still don 't know how .) PAINT will take the

turtle from its current grid location , draw the little shape inside : MOTIF, and

then return the turtle to the grid location on which PAINT found it . So some kind

of state transparency must be respected by PAINT .

" Cartoons C, D , and E sketch the movement of the turtle from one column to

the next. The turtle must move over to the next column until it has completed all

the columns of anyone row . To do this, the turtle needs to pick up its pen, turn

right 90, move forward the between-columns distance, turn left 90, and put down

its pen. I 'll call this procedure CSTEP, for olumn ~ ping . CSTEP's single

argument will be the distance between columns .

" Cartoons F , G, H , and I sketch the movement of the turtle from the end of a

finished row to the beginning of the next row , if an additional row is required .

Cartoon G shows the turtle , after lifting its pen, moving left to the x value of the

starting point , : POINT . The turtle then turns right 180 and goes forward by an

amount equal to the between-row distance. The turtle turns another right 180 and

puts down its pen. The name of this procedure will be RSTEP, for row ill2ping .

RSTEP's single argument will be the distance between rows ."

Story

Everything that the illustration student said above is correct. Her intuition was

very good and her idea about PAINT : MOTIF (before she knew about lists) is

very elegant. Let's use her story board "characters" and translate them into

formal Logo notation.

The procedure to set up the upper-left-hand starting point has already been

written . It 's GIVE . PT. Our procedure GO. PT sends the turtle to the starting
place.

What about PAINT :MOTIF? What is :MOTIF?

Painting the :MOTIF list

We are already familiar with the REPEAT n [Logo commands] construct . This

command could be used to get the MOTIF list painted - or drawn - on the screen .

We could simply say : REPEAT 1 : MOTIF . A shorter way of saying REPEAT 1

[something] is RUN [something] . So we can answer the question of how to paint

the list as follows : Make sure the turtle is where you want the motif to be , and

Chapter 5

board cartoons into Logo notation

MAKE
RUN

"MOTIF
:MOTIF

[STARGON 7 10 . 5]

172

Let's think of : MOTIF as being a list of the Logo commands that will draw

the needed figure. For example, suppose we want a grid made from individual

stars with 7 points. We could make the value of : MO T I F be a list like

[STARGON 7 10 .5] . How do we then "paint" this list?

then RUN the list that defines the motif .

Here is an example of RUNning a : MOTIF list :

Rectangular and Random Grids

: COLS
: ROWS
: CDIST
:RDIST

number of columns in the grid
number of rows in the grid
distance between the grid ' s columns
distance between the grid ' s rows

173

To verify what we have done so far , type GIVE . MOTIF and then respond

with a series of state -transparent Logo commands . Next , type RUN : MOTIF .

Watch the turtle . Everything OK ?

Let 's name the master procedure that will put the pieces of the grid

procedure together FLAG. FLAG will need four arguments :

Don ' t forget , though , that the MOTIF list must be state transparent . There

is no problem about this with STARGON because this procedure always leaves

the turtle where and how it found it .

Let 's write a tiny procedure to ask that the elements of the : MOTIF list be

typed on the keyboard , to place the results into list , and to make the list be the

value of : MOTIF .

TO GIVE . MOTIF

; To set up the : MOTIF variable that will be

; used by the master grid - building procedure .

PRINT [Give the Logo commands that define the shape]

PRINT [The shape commands must be state transparent]

MAKE " MOTIF READLIST

END

-

-

-

-

TO CSTEP : C
; To move the turtle over one column .
; The between - column distance is : C.

The circle notations used above are transposed into the REPEAT commands

of the completed FLAG procedure below . Notice that one REPEAT is "nested"

inside another REPEAT. This REPEAT nesting copies the circle nesting above.

Chapter 5

Before we write FLAG, we can write the much simpler CSTEP and RSTEP:

TO RSTEP : R
; To move the turtle from the end of one row
; over and then down to the beginning of the next .
; The between - row distance is :R.
PU SETX FIRST : POINT

We can now easily fit the pieces together .

TO FLAG : COLS : ROWS : CDIST : RDIST
; To create a rectangular grid flag .
; : POINT holds the x - y starting position and
; : MOTIF holds a state - transparent shape .
GO. PT

174

PO RT 90
FD :C
LT 90 PD

END

RT 180
FD :R LT 180 PD

END

Rectangular and Random Grids

TO : ROWS : CDIST : RDIST

a rectangular grid flag .
the x - y starting position and
a state transparent shape in it .

[REPEAT :COLS [RUN :MOTIF CSTEP :CDIST] -

END

State transparency in the MOTIF list

175

RSTEP : RDIST]

That 's it . The compactness of the FLAG procedure is possible because we

used lists for "holding" our MOTIF description , nested REPEAT commands, and

short , support structures - GIVE . PT, GO. PT, GIVE .MOTIF, RSTEP, and CSTEP.

But don 't overlook the difficulty of understanding that double repeat

operation . Try getting an intuitive feel for it by running FLAG with STEP turned

on; watch carefully what happens.

Did you rejoice that none of the procedures associated with FLAG used

recursion ? The REPEAT construct and recursion methods are often alternative

ways of accomplishing a modeling task. The choice between the two approaches

is often a personal one; one method may simply seem more aesthetically

pleasing to you for a specific problem . Occasionally , you may feel strongly that

recursion is the right visual metaphor for what you are modeling and other

times that it is not . Exercise 5.2, at the end of this chapter , asks you to

restructure FLAG using recursion, avoiding all uses of REPEAT. You should then be

able to make your own comparisons between these alternative styles.

On the next page you will see an exploration of grids made up only of

squares. Can you guess : MOTIF's value for each of the illustrations ?

FLAG : COLS

; To create

; : POINT has

; : MOTIF has

GO . PT

REPEAT : ROWS

The FLAG-produced grids on the previous page all used either CNGON or CONGON

in their MO T I F lists . Remember how careful we were to design those two

procedures so that they both left the turtle in the same position in which it was

found ? This is state transparency. If you include procedures in a FLAG MOTIF list

,
Chapter 5

Rectangular grids composed of squares

 00000
00000
00 <><>

00
<>
00 0

176

Rectangular

that are already state transparent , everything is fine . If , on the other hand, you

wish to make a grid design from a non-state-transparent procedure you have

some additional work to do. Let 's review these ideas by going through the

exercise of turning a non-state-transparent procedure into a state-transparent one

and then making grids with it . Suppose we want to make a grid ' with a teepee-

shaped figure like the following :

and Random Grids

 . .

. : .

.

.

. . . . ' . . .

Here is a procedure for drawing the teepee shape:

: SIZE
: SIZE

: SIZE

TO TEEPEE
RT 30 FD
RT 120 FD

END

below .

.

.

.

.

.

.

.. . .~.... . . .,. .<:]...
.

.

.

.

.

. b " . "

177

This procedure is not state transparent because it does not return the turtle

to its original position . The starting and ending positions of the turtle are shown

Chapter 5

There are two simple ways to make TEEPEE state transparent . The first is

the most obvious : simply move the turtle backward to where it began. Call this

procedure TPI .

to making TP state transparent .

This method doubles the length of the procedure, and the additional

length obscures the procedure's design. Procedures should be as short and as

descriptive as possible; that's good modeling style. Perhaps there is another

way to make the state transparency of the procedure more obvious.

We really want to say something quite simple to the turtle : "Remember

where you started from- and in which direction you were heading- and then go

back to that position after you have finished drawing the teepee." The second

approach does this explicitly; but we need two new supporting procedures to

make it work nicely.

The procedure RECORD. pS assembles the turtle's current x-y position and

heading into a three-element list called : Ps . The operation of RESTORE. pS

should be obvious.

state .

178

TO RECORD.POS

; Records the turtle ' s current position
MAKE "pS (SE XCOR YCOR HEADING)

END

Note : when the command SE has more than two arguments , as in the

situation above, parentheses must be placed before SE and after a space left

behind the last argument . Verify this in your own Logo manual .

TO TP1 : SIZE

; First approach
RT 30 FD : SIZE
RT 120 FD : SIZE
BK : SIZE LT 120
BK : SIZE LT 30

END

Rectangular and Random Grids

TO TP2 : SIZE
RECORD.POS
TEEPEE :SIZE
RESTORE.POS

END

179

the turtle to the position state

: POS .

: POS FIRST BF : POS

: POS

state - transparent teepee maker :

TO RESTORE . POS

; To restore

; recorded in

PU SETXY FIRST

SETHEADING LAST

PD

END

Here, then, is an obviously

You will find many more uses for RECORD . POS and RESTORE . POS .

A Mayan -inspired grid that vibrates

I hope the square and teepee grids make you think about rectangular sym-

metries and that you are now impressed with the help Logo models give us in

exploring visual ideas. I will admit , though , that these grids are not the most

exciting images to look at. They lack surprise and "quirkiness ." They are, in fact,

too balanced and too symmetric . So I am pleased to present a student -designed

grid that exhibits an odd , surprising quality - within a symmetric framework .

I' ll let the student describe his own work .

" I wanted to make a grid from square-ish spirals that wrapped back on

themselves. I needed to use the RECORD. POS and RESTORE. POS procedures

because I wasn't sure where my spiral would end up, and I had to make them

state transparent . I came up with the Mayan description of the grid only after I

looked at my results . I was surprised about the vibrating quality of the grid ; I

tried to explore the source of the vibration by changing the arguments that I

ga ve to my procedures."

Chapter 5

 . .J L

I I

Here are the two procedures the student needed for his : MOTIF list :

(: LEV- l)

TO

:FAC :LEV
RT 90]

END

SPIRAL 90 15 12

LAY 90 15 12

180

REPEAT

.
,

.
,

TO SPIRAL : LEG : FAC : LEV

IF : LEV < 1 [STOP]

REPEAT 2 [FD : LEG RT 90]

SPIRAL (: LEG - : FAC) : FAC

END

LAY : LEG : FAC : LEV

Position 4 spirals at 90 degree

intervals around a central point .

4 [RECORD . POS -

SPIRAL : LEG

RESTORE . POS

Rectangular and Random Grids

Two Mayan grids

For both illustrations below, the : MOTIF list was [LAY 30 5 12] . The FLAG

arguments were 4 3 65 65. The reversing pen color was used for the second

illustration .

181

One effective way to make rectangular designs more visually entertaining is to

add limited amounts of randomness to them . I would like to introduce this idea

by exploring Exercise 4.9: " Design a procedure that will place a certain number of

STARGONs randomly on the screen (a random rectangular grid)."

How did you approach this ? No doubt you looked up the RANDOM command

in your Logo manual and found that it could produce " random numbers " ; but what

are those ? The exercise of generating random grids will give you a visual model

of what these random things actually look like . You need a good feel for these

random numbers because we will be using the idea of randomness for the rest of

this chapter and in several future chapters .

Random

The Logo command RANDOM requires a single , integer argument . Logo then

produces an integer in the range from 0 to the argument minus 1. For example,

RANDOM 4 would produce a single number that could be 0, 1, 2, or 3. Each of these

numbers is equally likely to be returned by Logo, and it is very unlikely that you

could correctly guess what Logo would respond every time you type RANDOM argo

Guessing a single RANDOM 4 outcome correctly is tough . It is even tougher to

predict correctly the pattern of the numbers given by Logo if you should type

RANDOM 4 over and over again. There may indeed be a pattern , but it cannot be

guessed easily before it occurs. Unless, of course, you are exceptionally lucky ,

have ESP, or know the model that your version of Logo uses to generate random

numbers.

Chapter 5

Adding random components to rectangular grids

numbers

182

Let's design a Logo procedure to generate a series of random numbers so that

we can look at them. Here is an example of such an exploratory tool .

Rectangular and Random Grids

TO RANDOM. NUMBER: RANGE : N
; To PRINT :N random numbers in the range 0 to :RANGE.
IF :N < 1 [STOP]
PRINT RANDOM (: RANGE+l)
RANDOM. NUMBER : RANGE (: N- l)

END

"2..r;-

0 , 0

- , " 00 '"2.. 00

- \ '2..5""

183

Note several things about this procedure . First , the use of PRINT to display

on the screen the value of a calculation . Other examples of this would be PRINT

SIN 43 or PRINT variable . Second , remember tha ~ RANDOM arg outputs a

random number that can never be larger than arg - I . If you want it to be possible

for the random number to be as large as , say , : RANGE , you will have to use

RANDOM (: RANGE + l) .

Random screen locations

We next need to decide how the RANDOM function can be used to generate not just

random numbers but random x - y screen positions on your screen . Obviously we

need two random numbers for each position , and the range of these numbers must

correspond to the numbering convention of the screen . Because different screens

have different maximum dimensions , let me show you the screen size that I will

be using . You may have to make some adjustments :

Chapter 5

RANDOM 1 (: HI : La)+

184

Notice that the x coordinates of my screen run from - 200 to + 200 , and the y

coordinates run from - 125 to + 125 . To pick a random position on this screen

requires negative as well as positive random numbers . But since RANDOM will not

produce negative numbers , we must be a bit clever .

Generalizing RANDOM

What we need here is a Logo procedure that will produce a random number

within a defined range that may include negative as well as positive integers .

Let 's design a new procedure that improves upon and extends RANDOM to do this .

Call the new procedure RR for random numbers within a defined range of

possible numbers . RR will need two arguments , the first to define the lower end of

this range and the second to define the higher end . Call them : LO and : HI . But

how do we do it ?

Perhaps a drawing might help . We want random numbers that are never

less than : LO and never higher than : HI . We want these numbers here :

f - ' +\ t - LO - - ~ \

- +

l...o W (: ; WArJ " \ ~ i > " v \ l '

/ I . .JJ n ,. / tc . . I ...J ' TtJ, t ~ ti 1

t ! . AiJ (rf ; -

We could express this a little differently by saying that we want numbers

no less than : LO and no more than : LO plus the difference between : HI and : LO .

Perhaps we could generate random numbers between 0 and the difference between

: H I and : LO and then add these to : LO .

We already know how to generate random numbers between 0 and the

difference between : H I and : LO using RANDOM :

smaller than 0 and never biggerThis expression will produce numbers never

than (: HI - : La) . The random number we want , the numbers that fall in the

range between : La and : HI , could be found with :

ure :

use this SET idea to send the turtle

Rectangular and Random Grids

: LO + RANDOM 1 + (: HI : La)

We thus have the idea we need to write the proced

TO

.

,

.

,

OP

END

RR : LO : HI

To generate a single random number
in the range defined by : LO and : HI .

(: LO + RANDOM 1 + (: HI - : LO

Note the appearance of the new command OP, short for OUTPUT. Look it up

in your Logo manual . Why do we need OP in the procedure RR?

Experiment with RR. Notice that it works fine for negative numbers . For

example :

- 100
- 100

- 50
50

RR
RR

But what 's wrong with the following ?

RR 100 - 100

Using RR to generate random screen locations

We can easily generate a random screen location for my screen with the

following :

SETXY (RR - 200 200) (RR - 125 125)

to a random position on my screen.Let's

185

MAKE "ORNAMENTl [STARGON 5 20 . 5]
MAKE "ORNAMENT2 [CNGON 4 30 CNGON 30 30]

Chapter 5

TO GO. RANDOM. SCREEN

: ORNAMENT 1 or RUN:ORNAMENT2. Remember

30 30]

Here is what these two : MOTIF lists look like :

""i:?

186

 Now we could tell Logo to RUN

that this is equivalent to typing:

RUN [STARGON 5 20 . 5]
RUN [CNGON 4 30 CNGON

; To position the turtle at a random x - y screen point
PU SETXY (RR - 200 200) (RR - 125 125) PD

END

Putting the random grid procedure together

We can now put the pieces together. GO. RANDOM. SCREEN sends the turtle to a

random screen position . Next , we want a : MOTIF placed at this point . Then we

send the turtle on to the next random position with GO. RANDOM. SCREEN. The

: MOTIF to be drawn at each stopping position can be defined , just as we did in

the rectangular grid exercise, as a list of Logo commands . We call the master

procedure that combines the pieces RANDOM. PLACER.

Let's build a few : MOTIF lists to test out RANDOM. PLACER.

Rectangular and Random Grids

Naming is power

Much of Logo's power comes from its ability to make a name, like : ORNAMENT 1,

have the value of- or be equivalent to- something else that is much more

complicated . This super shorthand is enormously useful . Once we decide how to

do something in Logo, we give it a name. Then all we need to remember is the

name of the things to be done and not the complicated bits and pieces actually

required to get them done.

Building the visual model of random numbers

Visual experimentation

Try running this routine by typing the following :

RANDOM. PLACER : ORNAMENTl 25

187

No more talk ; here it is .

TO RANDOM . PLACER : MOTIF : T

; To place the shape list given as the argument

; : MOTIF randomly on the screen : T times .

IF : T < 1 [STOP]

GO . RANDOM . SCREEN

RUN : MOTIF

RANDOM . PLACER : MOTIF (: T - l)

END

~ * ~ u W
u {:? ~

~

~ Uu

()

Chapter 5

RANDOM. PLACER : ORNAMENT2 25

188

Generalizing the random placer machine

I was surprised by what I saw when I first looked at a random grid design . I

expected to see a tangled " mess " of little : MOTIFs . Instead I found collections of

figures that were pleasing and distinctive . The character of one random grid was

often quite different from the character of another . The placement of the clusters

of composite : MOTIFs produced a nice balance in some of the grids while

unbalancing others . Some grids were lively , and others subdued . Many were

neutral and boring .

I wondered if I could blend some of this randomness into the rectangular

grids you have already seen . The addition of a little bit of randomness into a

geometrical structure can be a way of giving life and animation to a static design .

But , before all that , let ' s clean up the random placer procedure and make it

a little more general . First , an element of tidiness : I don ' t like the overlapping

of : MOTIFs at the margins of the screen . If a figure is too near the bottom of the

screen , for example , it wraps around and finishes at the top .

Second , I would like to be able to change the size of the " window " into

which the figures are randomly placed . So far , we have been using the size of

my entire screen as the window . If I could define the " window " size and define

Defining a window as a list

Rectangular and Random Grids

first .

Let 's define the size and placement of a window in terms of a list . Arbitrarily ,

let 's use the following convention : the first element in the list represents the y

value of the top of the window , the second element is the x value of the right

edge of the window , the third element is the y value of the bottom of the

window , and the fourth element is the x value of the left edge of the window . I

started at the top of the window and went around it in a clockwise direction . My

screen would be represented as a window with the following characteristics :

MAKE "MY.SCREEN [125 200 - 125 - 200]

Here is a procedure that will take a window list as its single argument and draw

the window on the screen.

189

its location on the screen, I could have several " fields " of randomly placed

: MOTIFs on one screen. Here is a sketch of what I have in mind .

Because wind owing might be useful when we attempt to add bits of

randomness to structured patterns , let 's start working on this window business

Chapter

Eliminating the overlat2 of : MOTIFs near the window edge~

If we were careful never to let : PIPs be drawn any closer than 20 units from

each of the four window edges, we would never have any edge-overlap problem .

We could just make the window smaller by 20 units in each of the four directions .

A picture helps:

~ ~ t '

. t
. . . ~ . . " . ~ "

. ' '

. .

: E~ ; cI, vc: I-.a..tA :~ ~ ~c.a. ff "J
' : ~ ~ ,.,.. ~

"::: W 1.oJ ' V 0 voJ

5

TO BOX :WINDOW

; To draw the outline of a rectangular
; window list on the screen .
RECORD. POS

PU SETXY (LAST :WINDOW) (FIRST :WINDOW) PD
; Positions turtle at top left - hand corner of window .
SETX (FIRST BF :WINDOW) ; Draw top of window
SETY (LAST BL :WINDOW) ; Draw right edge of window .
SETX (LAST :WINDOW) ; Draw bottom of window .
SETY (FIRST :WINDOW) ; Draw left edge of window .
RESTORE. POS

END

Suppose that the : MOTIF that we are using is:

MAKE " PIP [STARGON 5 20 . 5]

190

Note that BOX begins by positioning the turtle at the top left -hand comer of

the window and then draws the window by moving the turtle around the

window in a clockwise fashion . BOX is state transparent , too. BOX : MY. SCREEN

will draw a nice frame around whatever images are on my screen.

Rectangular and Random Grids

But how do we know how much to reduce the window when the : MOTIF list

is changed to something else? If we knew the number of the element in the

: MOTIF list that referred to the " radius " of the : MOTIF to be drawn , we could

pluck out this element and use it in our calculations . We are now at a stage in

Logo when Logo notation is easier to " talk " than English . So look at the

following upgraded RANDOM. PLACER . I have called this new , extended version

RANDOM. PLACER . X.

:N : T

a given

:MOTIF :WINDOW
: T :MOTIFs within

overlaps at edges .
of the element within the :MOTIF list
" radius " of the
" BOTTOM " LEFT)
1 : WINDOW) - (ITEM
2 : WINDOW) - (ITEM
3 :WINDOW) + (ITEM
4 : WINDOW) + (ITEM

: N
: N
: N
: N

:LEFT :RIGHT
: BOTTOM :TOP -

:MOTIF]

Note that the procedure GO. RANDOM. SCREEN has been incorporated into

the body of RANDOM. PLACER. X and that a REPEAT statement has replaced

recursion . I think the procedure " reads" well and needs no more explanation . So

let 's try it out .

191

:MOTIF

J
,

J

,

J

TO RANDOM . PLACER . X

; To randomly place

; : WINDOW with no

; : N is the number

; that defines the

(LOCAL " TOP " RIGHT

MAKE " TOP (ITEM

MAKE " RIGHT (ITEM

MAKE " BOTTOM (ITEM

MAKE " LEFT (ITEM

REPEAT : T [PU -

SETX RR

SETY RR

PD -

RUN

END

-

shape .

:MOTIF
:MOTIF
:MOTIF
:MOTIF

Chapter 5

Random grids willi no edge overlap

192

Rectangular and Random Grids

Kandinsky grids

Wassily Kandinsky (1866-1944) was born in Moscow but trained in Munich . He

totally abandoned realistic art for the abstract, a form he consid~red to be more

spiritual . He made great use of simple geometric forms placed within

frameworks that could be labeled "randomish ."

A good example of such work is "Several Circles, No 323," reproduced on

the next page. The original painting is 1.4 meters square, and the circles glow

with translucent light , not at all like this tiny and opaque reproduction . It is

enormous and transparent . I have also included Kandinsky 's pen-and-ink study

for this painting .

Stare at this poor reproduction for some time or, far better, go out and find

yourself some Kandinsky reproductions on postcards.

On the page following the reproductions , you will see a few of my Logo

attempts to simulate Kandinsky 's "Several Circles ." They are, of course, pale

imitations , but that is not the point . Now it 's your turn . Look at this painting

and try your best to simulate several of the visual ideas expressed within it .

There is more going on than just randomly placing circles.

193

Kandinsky circles

Chapter 5

194

Look back at the random grids .

place that immediately attracts

using

Chapter 5

Random grids with multiple windows and multiple motifs

There is no single focus of attention , no single

the eye in any of these designs. A single focal

Here is a picture of the two windows , the BOX procedure .

BOX :T.FRAME
BOX :B.FRAME

196

point isn't always wanted in a design, but let 's experiment with trying to place

one within a randomized pattern .

The following experiment is my own . You can certainly come up with

different approaches, though your exercise should have the same goal as mine,

namely , exploring the visual idea of focusing random grids.

I tried to focus a random grid by introducing two different sizes of the same

shape (one large square versus many small ones) and by differences in placement

(one large window for the small figures and one smaller window for the large

figure). I divided my screen into two windows , one on top of the other.

MAKE " T . FRAME [120 140 - 40 - 140] ; The top window .

MAKE " B . FRAME [- 40 140 - 120 - 140] ; The bottom window .

I then decided to look at the visual impact of a few modifications to this

one focusing idea (two windows , two different sized : MOTIFs of the same

shape). Here are my changes in the experiment . Notice that the two windows

are now vertical rather than horizontal .

Rectangular and Random Grids

And the procedure that will carry out the experiments :

:T.FRAME 3 20
:B.FRAME 3 1

Here is my first experiment (the result is shown on the next page):

MAKE " L . FRAME [120
MAKE " R. FRAME [120

70 - 120 - 140]
140 - 120 70]

BOX :L .FRAME
BOX :R.FRAME

TO R.FOCUS.DEMO2
CG RT 45
RANDOM.PLACER.X
RANDOM.PLACER.X

END

: ORNAMENT 3
: ORNAMENT 4

:L .FRAME
:R.FRAME

3 20
3 1

197

END

BOX :T.FRAME
BOX :B.FRAME
R.FOCUS.DEMOl
CG
R.FOCUS.DEMOl
CG
R.FOCUS.DEMOl

TO R.FOCUS. DEMOl
CG RT 45
RANDOM. PLACER. X
RANDOM. PLACER. X

: ORNAMENT 3
: ORNAMENT 4

Here are the two : MOT IFs that I will use :

MAKE " ORNAMENT3 [CONGON 4 5 1 4]

; A small square filled completely with black .

MAKE " ORNAMENT4 [CONGON 4 30 1 5]

; A larger square rimmed in black .

Chapter 5

Focused random grids #1

aa a
. a

a -a

.
a

a

a
. a a.a

a a

D
aaa

a
a

a

aa
~aa

. a a
.aa

a

D
198

aa a
a a

a a

a a

. a a

a a a

a

D

Adding

Rectangular and Random Grids

Here is my second experiment (the results are on the next page) :

BOX :L .FRAME
BOX :R.FRAME
R.FOCUS.DEMO2
CG
R.FOCUS.DEMO2
CG
R.FOCUS.DEMO2

random to the regular

A good place to begin on this venture is to look at the Dutch painter Piet

Mondrian . Did you try Exercise 4.10? There I asked you to select a few examples

of Mondrian grid painitngs , study them, characterize the grid themes, and

translate your characterizations into Logo procedures.

I selected the painting "Compositie met kleurvlakjes ill . 3" of 1917. I am

sorry you cannot see the colors- pale blue / gray , oleander pink , and butter -

scotch- though you can see the shapes and their placement.

Here is what I said to myself . "Those boxes are all upright and almost on a

rectangular grid . The dimensions of the boxes themselves are randomly changed

in both height and width , but I will simplify that a little , altering them only in

the height dimension ." How to do it ?

199

. .

Chapter 5

Focused random grids #2

.

D.

.
.

a..
.

.
.

. .

.
.

.
. .

.
. ...

. .
..

D

.

.. . .
.

.
.

.

200

.

.
.

.
.

.
.

.
.

.
.

.
.

.

.
.

.
.

.

D

Rectangular and Random Grids

"Suppose we start with a regular , rectangular grid . The turtle arrives at a

point , but before we draw anything , we randomly 'perturb ' the position a little

in the x-direction and a little in the y-direction . Then we draw a box that has

itself been perturbed a bit in the height direction . Then we go back to the

arrival point and let the regular grid machine move us to the next point , and so

forth"

The following procedure mirrors this description . Some samples are shown

on the next page, along with the real Mondrian .

TO

.

,

.

,

.

,

.

,

on current x - y position .

found by adding a random

+ : DX to current x .

found by adding a random

+ : DY to current y .

to : E plus a random number

equal to : E .

~
.

~
.

~
.

~
.

RR (- :DX)
RR (- :DY)

: DX)
:DY)+

REPEAT 2 [FD : HT RT 90 FD : E RT 90]
RESTORE.POS

END

The next operation is to place M. BOX - with appropriate arguments - into

a : MOTIF list and then use FLAG to grid the whole affair . Note : M. BOX is state

transparent .

Probabilistic selection of :MQTIFs

The Mondrian boxes exercise was a start toward the integration of random

elements into defined geometries . Let 's look at one more attempt at this kind of

integration before going on to the exercises of this chapter .

201

M . BOX : E : DH : DX : DY

To draw a Mondrian box based

The x position for the box is

number from the range - : DX to

The y position for the box is

number from the range - : DY to

The height of the box is equal

from the range - : DH to + : DH .

The width of the box is always

LOCAL " HT

MAKE " HT : E + RR (- : DH) : DH

RECORD . POS PU

SETX (XCOR +

SETY (YCOR

PD

Chapter 5

A real Mondrian and two grids of Mondrian boxes

202

0
0

D
O

 D
D

O
 D

 D
O

D
O

 O
D

D
0
 D

D
 0

 D
D

O
 O

D
D

D
O

 O
D

D
D

O
D

D

0

0 DD 00 DO
ooDDO DOD

0 DDDDD
0000 DO D
D 00 DODD

Rectangular and Random Grids

203

Suppose we want to produce a regular rectangular grid from several

: MOTIFS, but we want the selection between alternative : MOTIFs at any point to

be probabilistic . That is, at any arrival point in the grid , we would like the

choice between drawing one : MO T I F or another to be based on given

probabilities .

Let 's think this through using a model . Define a procedure that selects

between two lists according to a probability measure. Let the probability P 1 be

measured in hundreds units , that is, the number of times an event will occur in

one hundred chances. The probability of selecting the first list , : L 1, should

then be : P 1 / 1 0 0, and the probability of selecting the second list , : L2, should be

1 - (: Pl / 1OO) .

TO P. GET : P1 : L1 : L2

; To output one of two lists (either : L1 or : L2) when the
; probability of the first being selected is given by :P1 .
; : P1 is given as times in 100 , e . g . , 1 in 100 = . 01 .
IF : P1 > RANDOM 100 [OF :L1] <- - - ???
OP : L2

END

How does this procedure work ? The real action comes on the line with the

question marks . RANDOM 100 will give one number selected from the range 0 to

99, one hundred possibilities in all . The chance that the number selected will be

0 is 1 in 100 or .01; the chance that the number selected will be 0 or 1 is 2 in 100 or

.02; and the chance that the number selected will be 0 or 1 or 2 is 3 in 100 or .03.

Suppose that we set : P1 = 3. Now look back at the marked line above. IF

: P1 > RANDOM 100 will be TRUE only if the random number generated is 0 or 1

or 2. As already stated, this will happen only 3% of the time . Therefore, P . GET

will output : L1 3% of the time and : L2 97% of the time when : P1 is set to 3.

Don 't be alarmed if you have trouble with these ideas. Probability and

statistics are difficult subjects, and our intuition generally doesn't give us much

help since it hasn't had much experience in a probability laboratory . Let's give

your intuition a little education on how the probabilistic P . GET operates. Here

is a procedure to run P . GET 1000 times to "see" what happens.

The interpretation : VERIFY had to run P . GET 40 times before [YES] was

selected. It wasn 't until the 114th time that [YES] was selected again . The

third [YE S] occurred on the 143rd time , and so on. In summary , 10 [Y E S]

selections were made in 988 runs of P . GET. That indicates a probability of 10/ 988

= .01012, very close to 1 in 100. That was just what we wanted to happen.

Chapter 5

TO VERIFY :P1 :A
; To test out P.GET for any value of :P1.
; :P1 is measured in hundreds. So :P1 = 1
; would mean a probability of .01 or 1%.
; Always give :A a value of 1 to start .

[PRINT :A] ???[NO]) = [YES])

40
114
143
234
300
545
838
850
950
988

204

IF :A >
IF P.GET
VERIFY :Pl

END

Look at the line with the question marks . If P . GET selects the first list ,

[YE S] , then : A is printed out . If P . GET selects the second list , [NO] , then

nothing is printed out . : A is the index that keeps track of the number of times

VERIFY has run P . GET. Here is the first experiment . I typed VERIFY 1 1 and

the following was printed . Don't be alarmed when you get different numbers for

the same experiment . They should be different , shouldn 't they?

1000 [STOP]
:P1 [YES]
(:A + 1)

Your turn to analyze these numbers . Change the value of

experiment a bit more . Are you getting a feel for how random numbers

select things probabilistically ?

Rectangular and Random Grids

Let's try it again, this time typing VERIFY 1 1. Here's the response:

18
41
170
277
279
300
412
466
498
707
770
844
863

Probabilistic grids

Suppose we would like to produce a grid that is a combination of the following

two : MOTIFS:

MAKE " Ll
RUN :Ll

[CONGON 30 20 5 2]

0
MAKE "L2 [CONGON 30
RUN :L2

20 1 5]

0
205

: Pl and

can help us

Designs

ds. The first grid uses this : MOT IF list :

Chapter 5

Our task now is to assemble the : MOTIF list . We certainly will use P . GET

in the list to select from : Ll and : L2 . Let's start with : Pl = 50 (a probability of

selecting : Ll of .5 or 50%). You might guess that the : MOTIF list should look

like this :

MAKE " MOTIF [P . GET 50 :Ll : L2]

The reason why this is not correct is subtle . Remember when we first

discussed : MOTIF lists , we said that the list must contain Logo commands that

can be RUN to produce the : MOTIF . The list above does not contain such

instructions . How do we get them ? We have to run P . GET 50 : Ll : L2 in order

for one of the lists that does have the : MOT I F commands to be output . The

following is correct :

MAKE " MOTIF [RUN P. GET 50 :Ll :L2]

Here is a little experiment that may help you in understanding the double

run business. Type the following lines and analyze the results . How do these

resul ts rela te to the discussion so far?

[P.GET 50 :Ll
[RUN P.GET 50

:L2]RUN
RUN :L2]

Here is another comparison to explore . Which is correct and why ?

MAKE "MOTIF
MAKE "MOTIF

[:Ll]
[RUN :Ll]

Below are four probabilistic ring gri

MAKE "MOTIF [RUN P.GET 100

206

:Ll : L2]

:Ll

The third and fourth grids blend the two : MOTIFs according to the list :

Rectangular and Random Grids

The second grid uses the same list but with the value of

0:

: P 1 changed from 100 to

MAKE "MOTIF [RUN P.GET 0 :Ll : L2]

MAKE " MOTIF [RUN P. GET 30 :Ll : L2]

What is important ?

207

This is the longest chapter in the book . We have spent perhaps too much time

discussing the machinery needed to build rectangular grids and to generate

random numbers . Don ' t forget , though , that the real goal of this book is to

encourage you to use Logo machinery parts to explore the images , patterns , and

objects that strike your fancy . Why ? Because visual models can extend and

amplify your vision , and I am certain that this will give you an enormous

amount of aesthetic satisfaction . Be careful , though , not to get too involved with

only the model parts ; the model , after all , is always to be aimed at the object of

your visual fancy .

Think about what ideas are being illustrated here . What does

probabilistic mixing of : MOTIFs mean in this context? We are introducing some

amount of randomness into a geometric design. What exactly does randomness

mean? On the page after next are some samples that illustrate these ideas using

square grids , while those on the page following introduce a new design, a tiny

spiral , into probabilistic grids .

Chapter 5

Probabilistic ring grids

00000
00000
00000
00000

0
0
0
0

000
000

00000
00000
00000
00000

208

0
0
0
0

000
000

00000
00000
00000
00000

O/(:);;.(>/(:)t()
<>.o~ <>()
<) /(><) () .(>
<>OI ()<:!I<)

Rectangular and Random Grids

Probabilistic square grids

00000
000 <><>
00000
00000

<} .I(..o.o <>
.().()<><>'<'>'
<) .00 <>.0.
<>-<><>.0.0

209

<><><>:.0.<>
<><><><>~
.0.<><>-0><>
'<>(>-<><>.0.

Probabilistic grids with spirals, rings, and squares

~
~
~
~

0
0
~
~

.

.
~
~

Chapter 5

$ii >

$ w

~

~

~
~

210

~~
$0>
$0>
$0>
~
\ 0
\0)
(0)

.

.
$0>
$0>

The little spirals should be easy to reproduce . Can you guess at the : MOTIF lists
used for all the designs? What is happening in the last : MOTIF ? There are

three : MOTIFs . How could this be structured ? Exercise 5 .5 will ask you to attack

this problem formally . .

$0>
~
~
~

(OJ
(OJ
~
~

~
~
~
~

~ ~ ooo
00
o ~

00
$0>
$0>
$0>

. .
$0>

$0>
$0>
$0>
$0>

({:I)
('0)
0
0
.
$0>
$0>
.

(0)
(0)
0
~
~

.

.

.
~
~
~

~
~

CO)
~
.
~

0
~

.
$;a>
$;a>
$;a>

$;a>
$;a>

(0)
$;a>

~

10
OJ
$0>
$0>
(l~
$0>

$0>
$0>
$0>

.

$w
$w
$w
$w

\ 0
(0
0
~

~
~
~
~

Rectangular and Random Grids

Exercise 5.1

Exercise 5.2

Exercises

There are eighteen exercises this time . They are not so easy , but you will be

surprised , I hope , by how quickly ways to start will pop into your head . Don 't

forget the turtle - walk / story -board approaches to developing intuitive brain -

pops , though . '

Go back and look at the circular grids you produced in Chapter 4. Review, as

well , the personal mark that you created for Exercise 3.6. Add some randomness

to these designs.

Restructure the FLAG procedure using recursion techniques. A void any use of the

REPEAT command . Compare the two methods on aesthetic grounds . You might

want to define carefully in words exactly what you mean by "aesthetic."

Exercise 5.3

The rectangular grid procedures that we have studied so far place one row

directly below another . Design a more general FLAG procedure that allows the

even -numbered rows to be indented by some given amount . Use either repeat or

recursive methods .

211

Exercise 5.4

Although we have designed a procedure called FLAG, we haven't designed any

flags yet . Redesign your own country 's flag so that it better represents current life

there - as you see it . You might want to find a book on heraldry so that you can

break all the established rules and traditions . Or not . Either way , keep the

iconography simple . Describe your heraldic symbols and symbolism in your

notebook.

Exercise 5.7

Chapter 5

Produce a super, razzle-dazzle demonstration of designs never seen before by

Earthlings using the ideas of this chapter: motif descriptions with lists,

placement of these motifs using variations of geometrical repetition rules,

random number generation, and probabilistic list selection.

During the preparation of this exercise, jot down any design rules that you

discover. llIustrate your rules with examples of designs that "work well" and

ones that IIdon't work at all.1I

Exercise 5.5

Generalize P . GET so that it can select any number of lists . Extend the definition

of :Pl so that it can specify the probability of selecting each of the possible lists .

Use your generalized P . GET to produce a number of multiple - : MOTIF designs.

Exercise 5.6

If you have a flair for flag modeling , design a generalized , multiple - argument ,

flag - machine that will design a flag for any country once the appropriate

argument values are established for the country .

212

Rectangular and Random Grids

Exercise 5.8

I found this exercise pinned to the wall of a classroom used for a Color and

Design course : " Channel 8 is preparing for an eventual slot on French television .

One of the first pieces of artwork they need is a TV test pattern . The main

function of a test pattern is to show technicians the quality of picture resolution

and the fidelity of the colors being broadcast .

" Test patterns usually contain some kind of black and white value scale

composed of varied linear patterns of thick and thin lines , as well as letters or

numbers to provide detail in judging the broadcast image . Of course , another role

of a test pattern is to tell the viewer that he has tuned into Channel 8 even

though they ' re not broadcasting at the time . So , include three character call

number & - cH8 - in the design , but not as the major design element .

" Traditionally , test patterns have been designed around a central circular

format , but there is no need to follow this tradition . Be sure to fill the

rectangular screen , too . "

What can you do with this ? Take advantage of the strengths of Logo and

design a test pattern that could not have been realized in any other medium .

Exercise 5 . 9

The illustration on the next page is Andy Warhol ' s " Marilyn Monroe , " done in

1962 during the Pop Art movement . You may recall Warhol ' s rectangular grid of

tomato soup cans . Each of the images of Marilyn , and each soup can , is exactly

the same ; this sameness was the message of Warhol ' s design .

I want you , however , to produce a grid of stylized faces , whose

characteristics (openness of eyes , openness of mouths , tiltiness of eyebrows , etc .)

are randomly perturbed from one face to the next . (Recall the Mondrian box

exercise .) Your faces will exhibit a series of different expressions . Don ' t use too

many characteristics - maybe two or three - before you visually experiment .

213

Exercise 5.10

This kind of exercise in no way trivializes the work of a Mondrian . Rather,

you should have a better sense of his artistic genius after you have tried to copy

paintings like these.

Chapter 5

214

I love Mondrian . We simulated several of the characteristics of one of his

paintings in this chapter . I want you to do more analysis of this sort . I include

several examples of Mondrian ' s use of vertical and horizontal bars to articulate

a canvas . Some of the rectangles produced by these bars are colored in , and

others are not . I want you to select several characteristics from these paintings

and simulate them with Logo procedures . Clearly state , in words , the

characteristics you are studying .

Rectangular and Random Grids

MondriansTwo more

I

215

Islamic art offers a treasury of circular and rectangular grid designs. Although

at first glance many look complex, a second look will uncover one or two basic

motifs that are repeated over and over again according to some grid protocol .

Look through the following illustrations ; they exhibit designs of increasing

complexity .

Find a design that appeals to you . Design a collection of Logo procedures

that can produce designs in the style of the one you have selected. Make sure

that your procedures are general enough to be able to produce a series of designs,

all based on a single theme. State the theme in words .

You might be able to produce a number of the illustrated tile designs from a

single Logo procedure . This exercise is very similar to the stone mason marks of

Chapter 4.

Chapter 5

Exercise 5.11

216

Rectangular and Random Grids

Islamic tile design #1

217

Chapter 5

Islamic tile design #2

218

ectangularand Random GridsR

Islamic tile design #3

219

Chapter 5

Islamic tile design #4

220

Rectangular and Random Grids

Islamic tile design #5

221

Islamic

Chapter 5

tile design #6

222

Rectangular and Random Grids

Islamic tile design #7

223

Chapter 5

#8

224

Islamic tile design

Rectangular and Random Grids

Islamic tile design #9

225

Chapter 5

Islamic tile design #10

226

Rectangular and Random Grids

Islamic tile design #11

227

Chapter 5

Islamic tile design #12

228

Rectangular and Random Grids

Islamic tile design #13

229

Chapter 5

Exercise 5.12

230

Are you beginning to see grid patterns everywhere?

This chapter has suggested that grid -thinking is a convenient method for

finding and analyzing regular patterns . Furthermore , our work with random

components suggested that grid -thinking can be extended into the realms 'of

irregular shapes and forms . The design materials used in the chapter, however ,

were selected from the created worlds of the artist and designer . The final two

exercises of this chapter suggest that grid -thinking can also be useful in

describing ways of seeing irregular patterns in the natural world .

I have a small , seventeenth-century house located in the department of the

Sarthe, about 100 miles southwest of Paris. The Sarthe, nestling between

Normandy and the Loire Valley , is covered with forests, fields of apple trees,

ponds , streams, and marshes. During the long and mild Sarthe summer and

autumn , the meadows surrounding my tiny house are filled with the ochre and

black and white cattle that are typical of this region of France.

But most typical of the area is the ubiquitous wood stack. Every Sarthe

farm has at least one, and each stack grows larger after the annual harvest of

farm trees and hedgerows. And even though many farms are no longer hea ted by

wood , the Sarthe farmers continue to build new stacks. Although I have often

noticed these wood piles in a casual way , it was only recently that I began to

sketch them and to think of them as sculpture . Suddenly , I realized that these

stacks are magnificent "wood works " ; in fact, they are huge log grids.

On the next page is a quick sketch of a stack of logs. What rules might have

been used to decide how to stack the various sized logs into this big pile ? Design

some Logo procedures to generate log grids based on different stacking rules.

 Rectangular and Random Grids

' - - - -

- ~ ~ - - -

Exercise 5.13

231

Twenty -five years ago I fled from the Chicago cold to the continuous summer of

Southern California . I lived in a funky house high in the Hollywood Hills

overlooking polluted - yet gloriously lighted - Los Angeles . Alas , I suffered

from one great loss. While my garden was lush with tropical plants , I had no

pool . My sense of incompleteness was made only more bitter by the fact that I

looked down on a city filled with thousands and thousands of pools . The

impression of distant pools is still vivid in my mind .

Last summer I visited my Pasadena mother -in-law and her pool . One lazy

afternoon , sitting in a deck chair and still a bit high from the pool chemicals, I

studied the patterns created inside that pool by LA light hitting the rippling

crystalline water . Yes, it was pool -light grids that I saw; and one Pasadena pool

was suddenly different from all the other pools.

Unfortunately , you may not have a pool at your disposal to study , even one

at a distance. As an alternative , the basins of fountains are good; they contain

clear water with plenty of surface disturbances . If you lack both pools and

fountains , I suggest that you look at a few paintings by David Hockney . I know

of no other painter who has so well caught Southern California pool light .

Look closely at the following Hockney painting . Does it suggest an

approach to designing watery grids ? Can you generate a series of pool -light

grids that are all of your own making ? But maybe you would rather describe the

reflective patterns seen in rivers , streams , or lakes ?

Exercise 5.14

Chapter 5

232

If you attempted the Hackney grid exercise, you may have found yourself

needing an arc drawing procedure. We can draw circles, but what about arcs?

Design a left and right drawing arc machine that takes two arguments: the

radius of the circle of which the arc is part, and the angle of the arc. Hint : the

circumference of any circle is equal to 2nR, where R is the radius of the circle.

The length of an arc is equal to the circumference of the circle from which it is

taken times the angle turned by the arc divided by 360 degrees.

Exercise 5.15

Exercise 5.16

Rectangular and Random Grids

Every season of the year has some major festival . Use Logo to help you design an

appropriate greeting card for a fete that is coming soon. Don 't forget the

envelope; your card and envelope designs must complement each other.

The only rule for this exercise is this : produce a card that could not have

been easily or appropriately realized in any other medium . You can combine

Logo designs with other materials , however , and collages are fine . You might

want to add visual remarks with paint , inks , photographs , glitter , whatever , to

your Logo-produced images. Or you may want to cut away parts with an Exacto

knife . You can photocopy your prints onto different colors and strengths of paper,

and you can build cards into the third dimension . But whatever you create, it

must reflect the style and flavor of Logobuilt visual models .

We have worked only with rectangular windows in this chapter . Suppose you

wanted to place a motif randomly into a triangular or circular window . How

could you do it ?

Exercise 5.17

Suppose you wanted to place a motif randomly into a rectangular window , but

suppose, too, that you did not want the motifs to overlap within the window .

Any ideas?

233

Chapter 5

Exercise 5.18

234

Are you exhausted by all this? Or excited, uplifted , depressed, furious ? I think

it 's time for you to do some visual modeling of your moods and subjective feelings.

Pick an emotion from the list that follows and design a Logo machine to produce

images that correspond to your idea of this particular state of being : Love, lust~.

greed, enthusiasm, envy, jealousy, happiness, joy , aggressiveness, lethargy,

alertness, hunger , guilt , fury , anger, compassion, generosity , arrogance,

passivity .

In preparation , you may want to jot down the ideas, shapes, colors, textures,

and images that come to mind as you freely associate this emotion with the

contents of your mind 's baggage. As you think about your selected emotion , try to

imagine how you feel about its opposite . Thinking about an opposite or reverse

state can often focus your vision of the original state.

Let yourself go with this exercise, but be concrete; capture your ideas and

feelings graphically . Sketch fast; grab the images as they float by . Don 't worry

about how you will explain to others what you have done. Describe simply

what you see inside yourself with Logo procedures.

Consider the following . Include a two -way switch on your emotion modeling

machine . One switch position should direct your machine to illustrate the

positive side of an emotion , while the other position will show the negative or

reverse side of it . Instead of a switch , you might be happier with a dial that

would let you illustrate a series of emotional states between, say, love at one

extreme and hate at the other .

"Know , oh brother . . . that the study of sensible geometry leads to skill in the

Islamic designs combine circular and rectangular grids

In the last two chapters, we have been working on circular and rectangular grids .

Within these chapters, the major exercise was to decompose given designs into

their basic components so that these parts could be modeled as generally as

possible. We then went on to build models to place these parts into forms that

were either circular or rectangular . We referred to these two design aspects as

the motif and the repetition rule .

The goal of this work was to build models that produced not just a single

design but a suite of designs all based on one or more themes. The exercises at the

ends of these chapters encouraged you to take your design apparatus outdoors ,

into distant fields , to find and sketch more exotic subjects. Now we turn to

Islamic art , an exceptionally rich source of sophisticated geometric designs. We

will use a selection of these fascinating patterns to test your modeling style and

then to extend it into new dimensions . Indeed, we will end the chapter with

three-dimensional designs.

Chapter 6
Islamic Designs

leads to skill in thepractical arts , while the study of intelligible geometry

intellectual arts "

From the "Rasa'il ," translated by S. H . Nasr .

Chapter 6

236

Much of the complexity sensed in Islamic designs is created by a

combination of circular and rectangular repetitions of several design motifs . In

fact , these combinations are often multilayered and recursive : circular grids are

ordered into rectangular patterns that are in turn combined into larger

rectangular designs . Our job is to make this geometric complexity intelligible ,

and modeling is our most useful tool . '
.

The ability to place individual images and clusters of images into

rectangular patterns is crucial to effective Islamic design work with Logo . We

need , therefore , a really general and easily manipulated grid machine . Toward

this end let ' s begin this chapter by generalizing the FLAG procedure of Chapter

5 . We will be using this procedure for the rest of this book , so we had best make

it as useful as possible .

Exercise 5 . 2 asked you to restructure the FLAG procedure using recursive

rather than REPEAT methods . Exercise 5 . 3 asked you to design a more general

FLAG procedure that would allow each row to be indented in relation to the

starting x position of the first row . Let ' s combine these two exercises into one .

Additionally , let ' s allow each row of the FLAG to have a different number of

columns and a different indent amount . But first we need a few more list

manipulators . They will be useful in the refashioned FLAG .

Rotating a list

We need another list manipulator to refashion FLAG , and here it is . Suppose you

have a list of items . How might you form a new list whose last element was the

first element of the original list , whose first element was the second element of

the original list , whose second element was the third element of the original

list , and so on ? You could think of this change as a kind of rotation . Rotate the

first element of the original list to become the list ' s last element ; keep all the

remaining elements as they are , and then output the list . Here is a procedure to

accomplish this list rotation :

Islamic Designs

TO ROT :LIST
a list at the end of the list .

A generalized rectangular grid machine

I think you will understand the following procedures as you read them . I

believe, too, that you will find the recursive form of FLAG to be easier to read

than the REPEAT fonn introduced in the last chapter. Do you think that "easier

to read" is the same as more aesthetic?

Here is a summary of the arguments of the revised procedure called RIFLAG

in which the RI stands for recursive and indented :

1 column.

237

: COLS denotes column information and must be a list . Each element of : COLS

indicates the number of columns per row . For example, [3 2 1] indicates that

the first row has 3 columns, the second row has 2 columns, and the third row has

; To put first element of

OP LPUT FIRST : LIST BF : LIST

END

Note the presence of the command OP. What happens when the argument

given to ROT is a single-element list ? When the argument is the empty list ?

: ROWS is the number of rows . This will normally equal COUNT : COLS.

: CD I S T is the distance between columns.

: RDIST is the distance between rows .

:J. lI denotes indentation characteristics and must be a list . The elements indicate

the amount of indentation for each row in relation to the x-position of the left -

most motif in the first row . Therefore , there is an indentation value for each

Chapter 6

row- except the first. Positive indent numbers mean that the indentation is to

the right, and negative ones indicate leftward indenting. For example, suppose
: IN is [20 10 - 10] . This indicates that the second row is indented 20 units to

the right of the start of the first row, the third row is indented 10 units to the

right of the first row, and the fourth row 20 units to the left of the first row.

COUNT: IN should normally be equal to (COUNT: ROWS) - 1. Why? If we,.
want no indentation on any row, set indent to [0] . Verify this after you have

read through the procedures below. Suppose that we want the odd rows indented

by 10 and the even rows by O? Set: I N to [10 0] .

The completed RIFLAG

TO ROWER : C : N

; To paint a row of : N

; by the between - column

IF : N < 1 [STOP]

RUN : MOTIF

CSTEP : C

ROWER : C

END

(:N- l)

238

TO RIFLAG :COLS :ROWS :CDIST :RDIST : IN
; Indented FLAG procedure with different
; number of columns per row possible .
IF :ROWS < 1 [STOP]
ROWER :CDIST (FIRST :COLS)

images separated
distance : C .

; Do a row of the proper column number of images .
IRSTEP : RDIST : IN

; Move down to next row and indent , if necessary .

RIFLAG (ROT : COLS) (: ROWS - l) : CDIST : RDIST (ROT : IN)

END

Islamic Designs

(ITEM
of the startingrow ' s

the indent amount for the next row .

180 PO

TO CSTEP : C

; This is the same as used for FLAG in Chapter

PO RT 90

FD : C

LT 90 PD

END

5 .

GO.PT
SETXY

TO
PO

END
(FIRST :POINT) (LAST :POINT)

Do you understand why ROT and EVAL were used in the RIFLAG procedures ?

Why must GO . PT be executed before RIFLAG?

Some RIFLAG examples

The following examples used the motif list MAKE " MOTIF [CNGON 4 20] .

[4 3 2 1] 4 50 50 [0]

00
00

0 0
0

0
0

0

239

TO IRSTEP : R : IN

PU SETX (FIRST

; Move back to

; point , then
RT 180

FD : R LT

END

: POINT) +

x - position
move over

GO.PT

RIFLAG

1 : IN)
first

Exercise 5.11 asked you to find an Islamic tile design that appealed to you and to

design a suite of Logo procedures that produced designs in the style of the design

you selected. Your procedures were supposed to be general enough to produce a

series of designs, all based on a single theme.

Let me illustrate the approach I would like to see you take by giving you an

account of my first Islamic tile exercise. Here is a design that struck my fancy. I

saw it in the classic Logo book , Turtle Geometry, by Abelson and diSessa. I

photocopied the image and pinned it over my desk.

Chapter 6

GO.PT

RIFLAG [4 321] 4 50 50 [25 50 75]

0
0

00
0

GO. PT

RIFLAG [4 5 4] 3 50 50 [- 25 0]

0 000
00000
0 <>0 <>

Starting work on tile design

240

000
00

Islamic

Designs

Finding the minimal design elements

241

The dotted lines enclose what I considered to be the basic design element of the

tile pattern: a hexagon on which six V-shaped arms are stuck. I reckoned that if

I could write a procedure to draw this basic figure, I could put it into a : MOTIF

list and then use RIFLAG to make a tidy grid of it . The finished rectangular

design clearly needs indented rows, so the indenting amounts will have to be

calculated.

Chapter 6

~ oo

.

.

.

 -1')co~ ~o i

Putting the geometry together

The next two sketches show the necessary geometry and trigonometry to

design the procedures that will draw the figure inside those dotted lines .

-

~I :r
A ~

I have defined two characteristics of the basic design, and these characteristics

became the two arguments of my procedure . They are : R, the radius of the

hexagon, and : I , one of the dimensions of the V-shaped arms design.

The main procedure is PIP . It uses two subsidiary procedures , BARS and

ARMS . Can you " read " them ?

242

Islamic Designs

TO PIP :R : I
CNGON 6 :R
BARS :R : I

END

TO BARS :R : 1
REPEAT 6 [(ARMS :R - 1) RT 60]1) (ARMS :R : I: I

TO ARMS : R : I : F

; : F controls the orientation of the arms .

; If : F = 1 , the arms are drawn leftward .

; If : F = - 1 , the arms are drawn rightward .
RECORD . POS

PO FD : I

LT (30 * : F) PD

FD (: R - : I) * COS 30

RT (30 * : F) FD : I

RESTORE . POS

END

Here is PIP 60 20 :

Putting PIP into a rectangular grid

Before we can make a rectangular grid of PIP, we need to know the between-row

and between-column amounts. The following diagram suggests how to calculate

: CDIST, : RDIST, and the row indent amounts needed to run RIFLAG. Do you see

that the dotted triangle is an equilateral triangle? The edges are all equal, and

the internal angles are each 60 degrees.

243

END

Chapter 6

~

~+T.

Here is a demonstration procedure ; use NEST . DEMO to watch the effect

changes in : Rand : I have on the final design.

244

TO NEST . DEMO : R : I : COLS

(LOCAL " EDGE " VERT)

MAKE " EDGE (2 * (: R + : I) * SIN 60)

; : EDGE is the between - column distance .

MAKE " VERT : EDGE * COS 30

; : VERT is the between - row distance .

MAKE " MOTIF [PIP : R : I]

GO . PT

RIFLAG : COLS (COUNT : COLS) : EDGE : VERT (LIST (- 1 * : EDGE / 2) 0)

; Note how the indent list is assembled .

END

A suite of designs based upon a single tile theme

On the following four pages are some experimental results from NEST. DEMO.

Each diagram has a different selection of : I and: R values. The smaller figure

is drawn with PIP : I : R, and the larger figure with NEST. DEMO: I : R.

The actual: I and: R values used for each diagram are noted. Could you

have guessed these numbers? Experiment with some other values, including some

negative ones, and then get on with your own design series.

Islamic Designs

NEST . DEMO designs #1

36 12PIP

PIP 10 30

245

Chapter 6

NEST . DEMO designs #2

PIP 30 15

PIP 25 20

246

DesignsIslamic

 ~ u ;~;><~~ u ~

yy

~ M~~:~~~M~

NEST. DEMO designs #3

PIP 30 5

PIP 20 30

~ \b(/j
 \\

247

~ u~
~o~M

Chapter 6

NEST. DEMO designs #4

Can you guess the arguments used for these two designs?

248

exercise

side. Equilateral triangles keep popping up . In fact, the entire teepee shape can

be neatly subdivided into tiny equilateral triangles . Let 's call the edge length of

these tiny equilateral triangles a. That means that the edge of the teepee shape

Islamic Designs

 Another tile design

Let 's go through another example of dividing an Islamic tile design into its

component parts and writing Logo procedures to draw them . Because your visual

sense is far more developed now than it was when we started this game , you

should be able to decompose designs very quickly and naturally . Test yourself .

will be 3a.

249

" #

Look at the design on the next page ; can you say quickly how to do it ? It ' s easy

now , isn ' t it ?

What is the basic design element ? Like many other Islamic designs , the

basic elements are based on hexagons . Why do you think this is so ? Here the

hexagon has an odd feature : American Indian teepee shapes are placed on each

edge of the hexagon .

*

How can we draw this figure ? First , let ' s handle the teepee shape . The

outline of the teepee is an equilateral triangle with a triangular bite out of one

Chapter 6

Islamic tile design #14

250

Islamic Designs

Drawing the teepee shape

Before

MAKE "A 20
RUN :TP
MAKE "A 50
RUN : TP

(l .

.

. 0. . .

. ' Q. .

. .

. .

l .1) 0.. 0... (I)

\ . ~ RT~

MAKE " TP

r-1
;lj
h
1
t

-ih
1
t

-ih
1

-3
0
1-3
0
1-3
0

.... !\)..
 0'\..

 I-' N
~~

O~
N* 0
 ..

J
 I I
 I

~

reach point (1)

reach

reach

tQ

tQ 0
 0

1-'-
1-'-

~
 ~

rt
 rt

-

-

you try to RUN this list , use MAKE to give : A some value. For example, try :

251

FD
LT
FD
LT
FD
LT
FD

:A
60
:A
120
3* :A
120
:A]

The following MAKE statement creates a variable called : TP and makes its value

equal to a list that includes all the Logo needed to draw the teepee shape. : TP

is just another motif list . The shape will be drawn , starting from the turtle 's

start position , as shown above, and ending in the same place. So, yes, : TP is a

state-transparent list .

(2)

(3)

.

,

Chapter 6

TO TPGON :RAD
PU FD :RAD PD
RT 120
REPEAT 6 [FD
LT 120
PU BK :RAD

END

:RAD RT 60]

252

How can we modify this procedure so that those teepee shapes are placed

on the edges of the hexagon? We could express this another way . Remember,

back in Chapter 3, when we spoke about changing the quality of the edges of

polygons ? There we changed the straight line quality of a polygon 's edge into a

kinked star edge. Later in the chapter , we installed a fractal edge. Now we

want to change the straight line quality of hexagon edges into " teepee edge

quality ."

Did you make any mistakes when you typed the value for : TP? If so, you

can edit_what you typed instead of starting allover again . Consult your Logo

language manual for the commands to edit names. Editing names is similar to

editing procedures.

Now let 's put the teepee shape on the edges of a hexagon. Look at the

following procedure . TPGON is a very simplified CNGON; it only draws six-sided

polygons . It is easy to see that the edge of a hexagon is equal to its radius

because hexagons are made from six equilateral triangles .

Islamic Designs

Here it is:

itA :RAD/ 2
:TP FD :RAD RT 60]

And here is an example of its visual output :

What next? We can put TPGON into an RIFLAG. TPGON goes into the : MOTIF

list , but then we must calculate the values for the : RDIST , : CDIST , and : IN

arguments . What we want to end up drawing is shown at the top of the next

page. But before we discuss how to carry out these calcula tions, let 's summarize

what we have done so far . After we summarize , we will sermonize , offering a

few rules on breaking down designs into their basic components . We might be

able to apply these rules to other Islamic designs. In preparation for all this, go

back and look again at the teepee grid .

253

TO TPGON :RAD
PU FD :RAD PD
RT 120
LOCAL "A MAKE
REPEAT 6 [RUN
LT 120
PU BK :RAD PD

END

*

When you first looked at this design, it probably looked complex ; the basic

design elements were not initially obvious . But a closer look uncovered the basic

component : six teepee shapes placed on the edges of a hexagon . Deeper

inspection showed that both the hexagon and the teepee shapes could be broken

down into small equilateral triangles . The edge dimension of these small

triangles conveniently became the basic dimension of the entire design, and we

labeled this edge length : A.

Chapter 6

Breaking down complex designs

We defined the teepee shape with a Logo list ; this list was incorporated

into a procedure that drew a hexagonal composite, or swirl , of teepee shapes;

254

Islamic Designs

and finally , we wanted to make the name of this swirl -drawing procedure the

value of the variable : MOTIF . We also planned to use RIFLAG to draw teepee

swirl grids .

A small review and a few lessons

Once we name a method , we can forget how its inner mechanism operates. We

can concentrate our energies on the next problem.

Now for the rules for finding the smallest design elements of a complex

figure . Keep your eye open for simple polygonal structures . Triangles / hexagons

and squares/ octagons are ubiquitous because they fit , or " tile," together so well .

Look carefully , though . You may not see the basic polygons because their edge

"qualities " have been altered .

Finally , let 's work out the necessary row and column dimensions of these

teepee swirl grids .

The three diagrams on the following page illustrate the calculations

needed. We are again manipulating the elements of equilateral triangles .

Do you see that the edge of the large equilateral triangles linking the

centers of the teepee swirls equals six small equilateral triangle edges?

We called the edge of the small equilateral triangle : A. Recall that the

height of any equilateral triangle is equal to either : EDGE* SIN 60 or : EDGE*

cas 30. Why are these two forms equivalent ?

255

Note the style of problem solving that we followed above . A complex visual

problem was broken down into smaller design elements . Each was structured

with either a Logo procedure or a Logo list . The final design was constructed by

putting the individual Logo pieces together .

Note the usefulness of the concept of naming in all this . Once we know how

to do something in Logo - like drawing the shape of a teepee using a list of Logo

drawing commands - we give the method a short name , like : TP . The name of

the method now represents all the features of the method but is short and tidy .

Chapter 6

Grid placement calculations for teepee swirls

\E- .~\0 -.~/j~
256

Let's try your eye on Islamic Tile Design #4 from Exercise 5.11. Note several

things . First , note where the turtle starts drawing the saw blade . This is not

arbitrary . The turtle begins at the vertex in the saw blade that will touch each

of the vertices of the underlying hexagon. (Go back and look at the STARGON

discussion in Chapter 4 where we talked about polygon edge qualities and the

rules that govern the replacement of one kind of edge with another .) Look at the

Islam]c Designs

Let 's use this geometry to write a demonstration procedure that will fit the

teepee figures together . This routine should work for any size teepees .

TO

.

,

A star and saw blade design

257

.

,

TP . DEMO : SIZE : COLS

: SIZE is the radius of the hexagon on which the teepees

will be placed . Remember that : A is : SIZE / 2 . : COLS must
be a list whose elements define the columns per row .

 MAKE " MOTIF [LT 30 TPGON : SIZE RT 30]
GO. PT

RIFLAG : COLS (COUNT : COLS) : EDGE : VERT (LIST (- 1 * : EDGE/ 2) 0)

; Note how the indent list is assembled .
END

Compare TP . DEMO with NEST . DEMO. Why are they so alike ? Because both

demonstration procedures place design elements at the vertices of equilateral

triangles .

TP . DEMO can produce designs similar to those on the next page . TP . DEMO is

generalized only in terms of the size of the design , the number of rows , and the

number of columns per row . That 's not as interesting as the designs shown at the

beginning of the chapter , is it ? How could TP . DEMO be further generalized , more

in the spirit of the NEST . DEMO designs shown earlier ?

(LOCAL " EDGE "VERT)
MAKE " EDGE 6* : SIZE / 2
; : EDGE is the between - column distance .
MAKE "VERT : EDGE* COS 30
; :VERT is the between - row distance .

Teepee swirl grids

Chapter 6

258

Islamic

sketch below . The dotted figure is this underlying hexagon . Remember that all

hexagons are composed of little triangles . Let 's have the turtle go to each of the

hexagon vertices in turn ; we can use a CNGON 6 : RAD to do that . Therefore , the

starting place in the saw blade list must correspond to where the saw blade

figure touches the vertices of the small , dotted b.exagon .

Designs

MAKE " SAW [REPEAT 3 [REPEAT 3 [FD :A LT 60]
LT 60 FD :A RT 120 FD :A RT 60 -

The second thing to note about the list : SAW is that it is state transparent .

Why is this necessary?

Finally , note the uses made of the nested REPEAT commands within the

list . The saw blade figure is actually a composite of a simpler form that is

repeated three times. Do you see this hook form ?

You might test yourself by writing your own alternative list structure for

the saw blade figure . Start your list at a different point or draw the figure in a

clockwise rather than a counterclockwise direction . Remember, though , that the

start of the : SAW list must correspond to the hexagon drawing procedure .

Remember that the : SAW shape is being placed on the edge of a hexagon.

259

LT 60]]FD 2* :A

The following procedure , SAWGON, is similar to TIPGON from Chapter 4. Rather

than retracing the shape of the underlying hexagon, placing the sawblades on

each edge (which is what TPGON did), SAWGON begins at the hexagon's center

and moves out to each vertex in turn . Once there it runs the SAW list and then

returns to the center. It then turns to face the next vertex and moves out to it . This

is repeated six times.

Chapter 6

Putting the saw blade into a hexagon swirl

TO SAWGON :A

To place six sawblades on the edges of a hexagon .
Note that the turtle must turn right 60 degrees
before RUNning the list : SAW. After RUNning : SAW
the turtle turns left 60 degrees . The radius of the
underlying hexagon is :A . Why?

REPEAT 6 [PU FD :A PD -
RT 60 RUN : SAW LT 60
PU BK :A
RT 60]

-

PD
END

Putting SAWGON into RIFLAG

We must now calculate the distance between rows and columns of these SAWGONs

so that they will fit neatly together . We want the hooks of the design to close

properly - one hook just inside another . The design will have indented rows, so

this amount must also be calculated.

Look at the design on the next page and compare it with the previous

teepee grid calculations . We are again faced with large and small equilateral

triangles .

The SAWGON swirls are centered on the vertices of equilateral triangles .

This geometry has been incorporated in the demonstration procedure SAW. DEMO.

It is just like NEST. DEMO and TP. DEMO.

260

.

,

.

,

.

,

.

,

.

,

DesignsIslamic

261

TO SAW . DEMO : SIZE : COLS

; : SIZE is the dimension of the small

; equilateral triangle a .

(LOCAL " EDGE " VERT)
MAKE " EDGE 5 * : SIZE

; : EDGE is the between - column distance .
MAKE " VERT : EDGE * COS 30

; : VERT is the between - row distance .

MAKE " MOTIF [LT 30 SAWGON : SIZE RT 30]

; Why the 30 degrees tilting of SAWGON?
GO . PT

RIFLAG : COLS (COUNT : COLS) : EDGE : VERT { LIST (- I * : EDGE / 2) 0)

; Note how the indent list is assembled .

END

Composite designs that hook nicely together

Chapter 6

262

Islamic Designs

Simplifying the SAWGON swirl

You may have noticed that we should modify the SAWGON procedure since it

draws too many SAW shapes . Several SAWs are repeated , one on top of another . In

fact , SAWGON needs to draw only two saw blades rather than six for the

composite design to mesh . The two diagrams below should convince you .

*

263

consistent rules .

Chapter 6

Overlapping designs

design

Suppose we want to draw these designs using Logo. Is it possible to break

the design down into smaller component parts that can be defined by lists or

small procedures? Are these basic design elements placed around some invisible

shape- as the teepees and saw blades were placed around an invisible hexagon?

Perhaps the following exercise will give you some ideas.

264

Go back and look at Islamic tile designs 11-13 at the end of Chapter 5. Notice

that these designs look as if they were woven from a pliable material . Part of

the design passes behind other parts , and this woven quality seems to follow

Can we simulate these designs with the techniquessome

we have developed so far ?

To start your thinking , make some sketches of a few interlocking rings . Let 's

actually look at interlocking polygon rings . Here are a few sketches of

interlocking circle , triangle , and square rings :

Islamic Designs

A grid of interlocking square rings

Look closely at the grid below . Would the component design elements be

different if the grid had only a single row ? Why ?

265

Chapter 6

An animated assembly of square rings into a grid

Now look hard at the following .

~

266

Islamic Designs

The basic design components

*

*

267

The following two diagrams illustrate what we want . The first shows the basic

element and the second shows the element placed around a square.

Overlapping square rings calculations

r -

Chapter 6

 ()~
\ "<>

~

t >IST
-

" 2.

,

~IiJ 4$0 = .je

s.o rc~ E1..E:"""t ~1S ~!:.oJE,- - - - - ~ - ::.

&~ 'C'\)&"f, (:~6) ':: ~ 'DIJ~ I ~"J 4-So

L.\"rTL-t;- e.v~ C: LE.) ': l ~~PIl.\~ - 't>'ST 12') J <; ,-J 4-C.o
'. \' H =. -r Hit ~ ,JE,S ~

268

The characteristics that will be needed to draw the basic design element are :

the radius of the square rings , the thickness of the rings , and the distance

between the rows and columns of these rings in a final ring grid . Let 's start with

equal row and column distances . The following diagrams illustrate one way of

modeling this ring problem . It isn 't the only way of doing it . Perhaps you would

be happier with another method . That 's OK . As long as you create " ringy "

shapes . Build a model of these shapes in a manner that is most natural to you .

Islamic Designs

Overlapping square rings procedures

TO

.

,

.

,

RT

FD

FD

FD

RT

LT

END

TO

PD
END

TO RING. DEMO
MAKE " MOTIF
GO.PT
RIFLAG : COLS

END
(COUNT :COLS) :DIST :DIST ([0])

269

:RAD/ (SIN 45)

The procedures below follow the diagrams on the previous page . WING draws the

individual component , and RINGS places this component around an invisible

square . You should see the similarity between RINGS and TPGON . RINGS places

an element around a square , while TPGON places an element around a hexagon .

WING : BE : LE : TH

State - transparent element that is

used by RINGS procedure .

135

(: BE - : LE) RT 90 FD : TH RT 90

(: BE - : LE - : TH) It 90

(: LE - 2 * : TH) RT 90 FD : TH

90 FD (: LE - : TH)

45

RINGS : RAD : TH : DIST

; Interlocking square rings . : RAD is radius of squares ,

; : TH the thickness of the rings , and : DIST the

; horizontal and vertical distance between the

; centers of square rings in a grid .

(LOCAL " BE " LE)

MAKE " BE . .
MAKE "LE (:RAD- (:DIST/ 2)) / (SIN 45)
REPEAT 4 [PU FD :RAD PD -

WING :BE :LE :TH -
PU BK :RAD RT 90]

:RAD :TH :DIST :COLS
[RINGS :RAD :TH :DIST]

An alternative structuring of WING and RINGS

same pproaches.

Chapter 6

END

The procedure RING. DEMO is the for both of the a

270

(LOCAL "BE "LE)
MAKE "BE :RAD/ (SIN 45). .
MAKE " LE (:RAD- (:DIST/ 2 / (SIN 45)
REPEAT 4 [PO FD :RAD PD -

RUN :WING -
PO BK :RAD RT 90]

You probably compared the design element WING with SAW and TP . The two

latter elements were designed as lists , while WING is structured as a procedure .

You will come to realize that lists and procedures are often interchangeable in

Logo . Below is the list alternative to the procedures on the previous page . Take

some time to think about the differences between the two approaches . Do you

find one more aesthetic than the other ? Why ?

MAKE " WING [RT 135 -

FD (: BE - : LE) RT 90 FD : TH RT 90 -

FD (: BE - : LE - : TH) LT 90 -

FD (: LE - 2 * : TH) RT 90 FD : TH -

RT 90 FD (: LE - : TH) -

LT 45]

TO RINGS : RAD : TH : DIST

; Interlocking square rings . : RAD is radius of squares ,

; : TH the thickness of the rings , and : DIST the

; horizontal and vertical distance between the

; centers of square rings in a grid .

Designs

differen

Islamic

It thicknesses, with all other characteristics fixedThree ring grids of

271

Three ring grids with different separations, with all other characteristics fixed

Chapter 6

272

Three ring grids with extreme

Islamic Designs

II
value" arguments

273

Chapter 6

Exercises

Exercise 6.1

The TP and saw blade designs were composed of tiny equilateral triangles . Can

you design a single Logo procedure that could produce either of these designs ?

You would have to find characteristics that describe the placement of

equilateral triangles in a basic design element . Then , by changing the values of

these characteristics , your procedures could draw either design . And they could

also draw a series of alternative designs , all based on triangles and all fitting

nicely together in a grid .

Start by designing a procedure to draw a large rectangular grid of small ,

interlocking , equilateral triangles . Print this grid onto a good grade of heavy

paper . You may want to consider blowing up your triangle - grid image with an

enlarging photocopy machine . Find a pad of translucent tracing paper and place

a sheet over the triangular grid . Trace out new tile designs on the translucent

paper , structuring the components with tiny triangle properties . Translate your

designs into procedures .

Carry out the same experiment with other shapes that tile together .

Which polygons do ?

Exercise 6 .2

I recently discovered Daniel Sheets Dye 's book , Chinese Lattice Designs ,

republished by Dover in 1974 . This book has 1200 illustrations ; I offer you only

several here . Can you use the design methods of this chapter to analyze these

images ? Can you design procedures that are generalized enough so that they can

produce several of the designs shown ? See if you can combine some of the Islamic

tile designs we have studied with the lattice designs below . Can you express in

words the difference in feeling between Islamic designs and those shown below ?

274

Islamic Designs

Lattices for Exercise 6.2

 DDD DDD DDD D D D D D D
DDD DDD DDD D8D~ D8D~ D8D~
 DDD DDD DDD ~ ~ ~ ~ ~ [ffi
DDD DDD DDD D8D~ D8D~ DBD~
 DDD DDD DDD 8 ~ 8 ~ 8CUJ
DDD DDD DDD ~ DBD~ DBD~ DBD

275

Chapter 6

More lattices

O ~ OOODOOOOOOOOO L - =~~

B Qon nOQQ -
O[=== ~U U~ o

01 1 I 10 ~
01 I 1 10 ~

01 I~ I 10 DoD~01 1 ~ I 10 ~
01 I 1 ~ D
01 I I ID

O~ n n[=::::===~ O
ooDu uD~
DODDODDDDDDDDc = JD

CJDDCJDDCJDDD
DD DD DD
Do oDD ODD DD
DbJDDbJDDbJDD
0000000000
0000000000
DDDDDDDDDDDDD
DD DD DD
Do ODD ODD DD
DDDDDDDDDDDCJ DCJ DCJ

~ O[:==~ JC=: ~ 0 D
c::=J 0 d c::=J 0 0
DO[~:=~~::] 01--------14[~::=] 0
O[~~~~~~: JL- ~ O[~=~=~]

D 0 d c:::::::J 0 D
D c::]CJoD
c::::::Jo d c::::::J 0 D
DO[~~~~~:=] 01--------14[==] 001 II 101 I

for Exercise 6.2

276

Exercise 6.3

Every city has oriental rug merchants. Visit one of these vendors , but remember

to take your sketchbook along with you . Record several rug designs that strike

your fancy. Explore these designs with a suite of Logo procedures. Hand color the

results and place them in your notebook.

Islamic Designs

Exercise 6.4

Exercise 6.5

tile designs at the end of Chapter 5.Go back and look at the overlapping Islamic

Work on one of these or on a design of your own .

To encourage you , I have included here an overlapping design (inspired by

design # 12 of Chapter 5) done by a French architectural student at Parsons

School of Design in Paris. It is the most elegant Islamic design done in Logo I

have seen. The student never showed me his procedures; he wanted to keep them

"secret." He did show me a few illustrations of the component parts he isolated

in his design. I have also included his visual investigation of the effect of

varying the width of these basic design elements.

277

Most large cities, anywhere in the world, now have at least one mosque that can

be visited by non-Moslems. Visit a local mosque, taking along your sketchbook,

and record several motifs that strike your fancy. Later, over a glass of mint tea,

explore your sketches with Logo procedures. Hand color your results and place

them in your notebook.

C) V CD 0)

E CD Cl) CD C Cl) CD o .

Islamic Designs

Component parts of the student design

~
,~'- -=

=:=~ "

 /~:=

""
~

-

== ~I'

/ /
/ /

/ /
/ /

~
""

-~ ~
'l---'" '. ,,'. ---:-~/ , \. ," /' "'..)\; cl'~ //.....:=0....;=: -~~ .- "" \-,.;,,- '"~(Jl- -=~..).. /~~:::~~./~ ' A_~\.LJ7~

279

Chapter 6

Visual exploration of different design element thicknesses

280

Islamic Designs

Exercise 6.6

281

Celtic art used overlapping patterns extensively. Th~ forms are based,

obviously, on the direct observation of knotted rope and other materials. Try the

empirical approach. Get some rope or heavy twine and tie a few knots. Sketch

what you see and try to reproduce the results with Logo procedures. I include

some Celtic examples to get you started. This illustration is taken from Celtic

Art: the methods of construction by George Bain (Dover, 1973).

Chapter 6

Exercise 6.7

One could characterize most of the work illustrated in this book so far as totally

geometric . Some of you might go so far as to claim that these designs- although

visually surprising and intellectually interesting - are excessively geometric ,

that they lack " life " and have no organic qualities .

You might be ready to ask whether the shape notation capability of Logo

can produce designs that share visual characteristics with pieces of the living

world . Chapter 7 will argue that this question can be answered "yes."

This exercise introduces a tree-drawing problem that will be developed at

length in the next chapter. I want you to think about it on your own , though ,

before you see my presentation; so don't read ahead into the next chapter.

A recursive definition: a tree is a branch attached to a tree- ~ ~~ ~ - ~ ~- --

Branching is not the only characteristic that make trees trees ; there are many

others , and we will eventually investigate some of them . But branching is

perhaps the most noticeable feature of trees . Look at the sketches on the next

page , taken from a nature guide book .

282

IslamicDesigns

of trees . So let 's start with Logo procedures that drawAh , the branchiness

branchy trees .

Here is a simple geometric branch . A more complex branching pattern could

be tried , but let 's start with the simple one first .

Let's start building a tree according to the recursive definition . Draw a

branch and attach additional branches to it . Make each successive branch a bit

smaller than the branch to which it is attached . We can describe these

attachments in terms of recursion level :

" . ,

,
(\ '

 ., '
\"

\' ,
\ '

.

IlornhcamGoat " 'illo'"

. - . -_.-
)':ngli,;h 1.:1111Pcduncul31C 03kScssilc Oak

T4

283

Chapter 6

) -~
y

}-- -<
L (\l 'E: L I

t : """"

LCI/E::L 3

These diagrams don't look very much like real trees yet . But remember- we

are only trying to produce designs that share some visual characteristics with

real trees; and we are starting with a single characteristic : "branchiness ."

Moreover , we have simplified branching into a geometric "Y " shape. We will

come closer to producing realistic trees as we add more real tree characteristics.

Be patient .

Your exercise is to design a recursive Logo procedure that will draw these Y-

branching trees. The basic procedure , BRANCH, will draw a single branch. You

may not be surprised to hear that BRANCH must be state transparent . You will be

asked to explain why this is so at the end of this exercise. Be warned .

Here is the BRANCH procedure: the two arguments are as indicated in figure

1 above. Notice that state transparency is accomplished by moving the turtle

back to its starting point with turtle movement commands. Using RECORD. pS

and RESTORE. pS in this situation will be discussed in the next chapter.

BRANCH : A : T

Draw a state

: A RT : T

: A BK : A

2 * : T FD : A

: T BK : A

branch .transparent

BK :A

284

TO
.,
FD
FD
LT
RT

END

Expand BRANCH into a recursive procedure that can draw the Y-shaped trees

sketched in figure 2. Allow for an argument that scales succeeding branch size

and another that controls the levels of branch attachments, that is, the level or

depth of recursion .

Hint : find the places within the BRANCH procedure where you would like

an additional BRANCH created.

Finally , why must state transparency be respected in this tree drawing

design? Be specific.

Islamic Designs

Yourwork

285

Chapter 7
Organic Designs

"Painting is a science and should be pursued as an inquiry into the laws of na ture.

Why , then, may not landscape painting be considered as a branch of natural

philosophy , of which pictures are but the experiments?"

John Constable

Tree experiments

I will use Constable 's words to state this chapter 's goal . He suggested that

making pictures of our natural environment is an effective way to to see it more

clearly . Although I would substitute the term visual modeling for Constable's

landscape painting , I seek the same end and suggest similar means: visual

experimentation with segments of our personal world can school our eyes the

better to enjoy the richness of the larger world .

In this chapter I will offer you an essay on several characteristics of trees:

first , their "branchiness ," and second, their quality of randomness -within -a-

structure . The illustrations should suggest other tree signatures to model . The

exercises at the end of the chapter will ask you to justify the title of this

chapter by looking at some nontree plants and beasts.

As you read through this chapter, please remember that I am showing you

my experiments with trees; this is the way I did it . Why trees? Every Logo book

has at least one recursive tree design, but few books play with the visual idea of

recursive trees . I hope my exercises illustrate

the visual implications of such an idea .

Organic Designs

how tiny tree machines can explore

Simple recursive trees

Exercise 6.7 introduced you to the idea of drawing simple trees composed of Y-

shaped branches. Let 's complete that exercise so that we can get on with

drawing more realistic trees and other landscape designs.

Review the BRANCH procedure introduced at the end of Chapter 6. The

following procedure follows that discussion but adds an additional argument ,

: B. The diagram shows how : B, the branch length , relates to : A, the trunk

length . Why might it be useful to have two length arguments , : A and : B,

rather than just : A?

To
TO BRANCH :A

To draw a Y shape .
:A RT : T
: B BK : B
2* : T FD :B BK :B
: T BK : A

: B : T

state - transparent
.

,

FD

FD

LT

RT

END

A

BRANCH is reproduced again below with the symbol (* * *) inserted to indi -

cate the places in the procedure where the turtle arrives at the tip of a branch.

BK

~

287

FD :B (S.TREE
LT 2* :T FD :B
RT :T BK :A

END

That 's it . But to use it creatively will take some imagination and play . You

might even be tempted to look at a few trees before you start your exploration .

Two pages of tree experiments follow . My intent was to present a series of designs

that folded and unfolded . I began with an unfolded design , a Mondrian -ish tree,

and proceeded toward a more folded -up one , a cypruslike tree . Compare these

designs with the folding / unfolding RECGONs of Chapter 3.

Chapter 7

(:A* :F)
(S.TREE

(: B* : F)
(:A* : F)

BK :B
(: L- l)) BK :B

288

These are the two turtle positions where we would like to place another branch.

This is , therefore , the position to insert some recursion apparatus . Remember

that recursion only means that a procedure uses itself in its own definition . In

other words , a recursive procedure asks that it be run again. You might want to

refer back to the recursion diagrams of previous chapters .

Once we have made BRANCH recursive , we will want to stop the recursion at

an appropriate level . We can do this by adding an argument to control the depth

of recursion . Because we may also want the branches to decrease , or increase ,

with the level of recursion , we will need another argument to scale the : A and

: B arguments as they are passed from one level of recursion to another . To keep

the names short , call the level argument :L and the scale factor argument : F.

You should find the following procedure easily understandable in terms of

Logo syntax . But you may not be able to guess exactly how Logo will draw the

shape on the screen until you do some experimenting . Since we are making .:?imple

~ s from individual branches, let 's rename our procedure S. TREE. Here it is:

TO S.TREE :A :B :T :F :L
; To draw a simple , recursive Y- branched tree .
IF :L < 1 [STOP]
FD :A RT :T

: T : F

(: B* : F)
(: L- l))

:T :F

Simple tree experiments

 ~ . .) .

" ~
. , . -

' t -

. . . -

~

. . . -

' t -

Organic Designs

-

289

Chapter 7

More simple tree experiments

290

Organic Designs

State transparency

Let ' s go back to the last question of Exercise 6 . 7 : " Why must state transparency

be respected in the tree drawing procedure ? " Watching the turtle as it climbs up

and down the branches of your trees should supply you with an answer . If the

turtle moves too fast , slow it down using the STEP command . This command lets

you step through a procedure one line at a time , and you control the speed of the

stepping . STEP is called TRACE in some Logo dialects . If you are not familiar

with this command , review it in your Logo manual .

Another way to slow S . TREE down is to insert a time lag procedure at one or

more places inside it . You might want this time lag procedure to print out the

current recursion level . Would printing : L accomplish this for you ?

The idea of state transparency has been useful in many of the design

exercises that we have explored so far . We introduced state transparency during

one of the very first exercises in this book , the centered NGON affair . State

transparency was reintroduced when we began to use design recursion . Recall

RECGON from Chapter 3 and the exercises dealing with the Gothic stone mason

marks in Chapter 4 . Later , in Chapter 5 , we saw that state transparency was

needed when we placed list - defined shapes within rectangular grids .

State transparency is needed here again because we are drawing trees

recursively . But why does that follow ? And what does the term really mean ?

Why state and why transparency ? Here is a good place to come to grips with

this concept . Can you draw a sketch of it ? Would making a sketch of a concept

make any sense ?

Multiply branched trees

So far our trees have had a simple Y - shaped pattern ; each branch forked once ,

producing two new branches . Why not expand this single forking design into a

multiply forking one ? To do so , let ' s add to S . TREE an additional argument that

defines the number of branches leaving a fork .

291

Chapter 7

Call this extended procedure M. TREE, for .m..ultiply branching ~ . Its

additional tree characteristic , the number of branches from a fork , will make

M. TREE more general than S . TREE. M. TREE will be able to draw everything

that S . TREE could draw , and more. Perhaps, too, M. TREE will create designs

that look more like real trees.

Let's call the new argument : N; it will specify the kind of forking to be used

within a tree drawing . Specifically , : N defines the number of branches that

leave the fork . Let's redefine the argument : T as the .tilt angle that the first of

these branches makes with the vertical . The new argument , : BT, will be the tilt

angle Qetween branches. The following diagram illustrates these new arguments:

~ iO

" . : : "

~T

Unfortunately this new procedure will have seven arguments . You will need

to be organized to experiment with different combinations of these arguments .

You might want to design an EXPLORE-type procedure to run your experiments

and place multiple trees on a single screen. (Look back at Chapters 3 and 4 if you

have forgotten this powerful idea.)

TO M. TREE :A :B :N : T : BT : F : L
; To draw multiply branched recursive trees .
IF : L < 1 [STOP]
FD :A RT : T
REPEAT :N [FD : B -

M. TREE (:A* : F) (:B* :F) : N : T : BT : F (: L- l)
BK : B LT : BT]

RT (:N* :BT) - : T
BK :A

END

292

Organic Designs

A few examples of multiply branched trees

293

Chapter 7

Placing fruit at the branch tips

TO FRUIT : SIZE
TEXTURE.ON
REPEAT 6 [FD : SIZE BK : SIZE RT 60]
TEXTURE.OFF

END

.

,

IF

The expanded procedure is a multiply branched , fruiting ~ .

TO MF . TREE

; To draw

IF : L < 1

FD : A RT

REPEAT : N

: A : D : N

multiply

[FRUIT : D

: T

[FD : A / 2

MF . TREE

BK : A / 2

(: N * : BT) - : T

: A

:T :BT :F
branched

STOP]

:L
with fruit .recursive trees

(:A* :F)
LT :BT]

: F (: L- l): D : N : T : BT

RT
BK

END

294

:L

Suppose we want to put small colored shapes (fruit ?) at the tips of the figures

drawn by M . TREE . Lacking color , I will need a textured fruit . I ' ll invent two

procedures , TEXTURE . ON and TEXTURE . OFF , that set the pen color to a fruity

texture and then change it back to nontextured black . Because pen textures are

dependent upon machine and Logo dialect , you will have to write your own

texture - setters . Here ' s a little fruit machine :

Where should we insert this fruit machine into M . TREE ? Where does the

turtle reach the tips of the branches ? Another way to ask this question is :

Where does the turtle decide not to draw more branches ? Or : When does the

turtle decide that it has recursed enough ? You should find this spot easily ; it is

located in the first line of M . TREE and is marked with the (* * *) symbol .

TO M . TREE : A : B : N : T : BT : F : L

To draw multiply branched recursive trees .

< 1 [(* * *) STOP]

.
END

Organic Designs

Notice a few of the changes. First, I have removed : B, the second branch

size argument , and replaced it- within the procedure- with :A/ 2. I found that

I really didn 't need : B. Second, I have introduced a new argument , : D, the size of

the asterisk -shaped fruit .

Different fruit shapes

We can change the fruit shapes placed at the tree tips by altering the FRUI T

procedure . But in fact, we can be more elegant than this . Recall our work with

rectangular grids in Chapter 5. We broke grids down into two elements: an

underlying placement mechanism that structures a grid , and the image motif to

be placed within this grid . We defined the image with a list . We could consider

the current exercise to be tree grids . The M. TREE procedure is the underlying

placement mechanism, and FRUIT is the image to be placed by it . This suggests

the following restructuring of MF. TREE. : FRUIT is now an argument that must be

a state-transparent image list .

: N : T : BT : F : L
recursive trees with
at the branch tips .

TO
:FRUIT,.

,

(:A* :F)

295

FRUIT.LIST .TREE
:FRUIT :N :T :BT
BK :A/ 2 LT :BT]

RT (: N* : BT) - : T
BK :A

END

: F (: L- l)

FRUIT . LIST . TREE : A : FRUIT

To draw multiply branched

; defined by a list , placed

IF : L < 1 [RUN : FRUIT STOP]

; Note the change here .
FD : A RT : T

REPEAT : N [FD : A / 2

Chapter 7

A few asterisk -fruit trees

296

Organic Designs

More asterisk -fruit trees

- - - -

. - - . . - - .

" " " "

" " " " " " " "
" "

- - - - -

. . . - .

297

 <:

,

- -

~ (... -.L.

I

C
h
a
p
te

r 7

>
-

.

(t)

~

~
~
.

~ .

- <
(t)

~

2
~ .

.

(/)

(") ro - C/) - OJ .,.,..
~ ~ ~ ~ ~ (") 2" ~ ::= ro ~
~ ~ Q. ~ ~. ~ p.. ~ c7: 0" ~
p.. o-J .-to ro '"1 ~ ~ ~ .-to '"1 ~
1::1 ~ ~ .-to ' ij '"1 ro~ ~ ro C/) ~-to .-to ~ p.

'-< .!J;-- Q ~ c. ~ ~ ';1'. O'Q S'-" ""' ~ "' ~ '" 0 0
b g ~ ro ~ ~ 0 ~ S' 8-
O'Qo :::::. ro g. O'Q 'ij p.. :::::. O'Q ~.... '"1 O'Q """ ""'
' ij C/) ~ p.. ro 0'"1 rox s- S ~ ~ '"""' ~
0 ~ ~ O'Q .-to ':"': 0 "
(") 2: .-to ~ ~
ro cr' .-to '"1 H ~ ro
p.. ::J"" ~ 0 - 0 ~
~ .-to ro <; ~ p.. ~ ~ C/)
~ ~ ~ ~ ~ @" ~ S.

~ O p.. p.. ~ ~ O'Q 0U) ~ C/) .-to ro .-to 0tIj ~ <; '"1 ro p.. ~
tIj p.. ro ~ ro :::;: p.. ro
0 ? ~ rn .-to C/) ~
. g. O'Q ~ . ~ O Q .-to
:r: '"1 0 O'Q > g p.. ~ . .-to
ro ro ~ ~ ~ ~ .-to ::J""'"1 (") . r O'Q 0 ro ~ O' roro ~ .-to ~ " <;
~ U1 0 ~ - ~ ~ ' ij
'"1 ~ ';1'. .-to ~ ~ '"1ro <: ro (") ~,. ro ~ 0.-to ro ro ~. ro ~ (")
~ 'ij .e:: g ~ S ~ p.. ~
'"""' ~ ~ .-to ro '" C/) ~
..... ::+ ~ C/) ::J"" 10M ~ '"1
U1 ro ~ . ro ~ ~ ro ro
.-to !1 p.. - ~ p.. ';)
,",,", ;:J C/) "". p.. C/) ::J"" ~ro .-to ~ .-to ~ 1::1 ro ~
~ ~ 'ij ~ rn o ~ C/) .-to~-to 0
p.. .-to ~ ro S ~ ~ ' ij
~ - ~ p.. ~ ' ij 0 '"1
~ ~ .-to p.. (") 1::1 0<; ~ (") ' 0 ro 0 ~ ~ p..~. ~ C/) ~ .-to ~
.... "" """ """ cr' ro ur ~ (")
O'Q ro ro 0 ,-< ro roC/) .-to 0 '-< '"1 '""'.-to '"1 p.. ~ ~ ~ H ~ A
~ '" 0 ~ .-to~ ro . 0 ~ O'Q .-to ::J"" Q. .-to cO
.-to p.. ~ .-to 0 ro ro ::J"" p)
- .-to ro p.. C/) ~ '"1 cr' ro ::J
1::1 0 ro ~ ro ~ ~ 0 '"""' _0.~ 1::1 ~ H ro IJ 0 0~ ~ 1::1 ro ~ ~ 0'""' .,.,.. p.. ~ '"1 ~~ O ""' ro .-to 0 0 CD

' " ~ p.. ~ :=: S ~. q '"""' ~ ~.
(0 ~ ~ 0 0 ~ ro .-to (Q. ro ~ '"1 ro ::J"" ~ ::J
(0 - C/)- V> ro '-< ~ ro O'Q U>

: NB : AA : F

dandelion

605240

[STOP]

: LEV
flowers

. 6 4.

Chapter 7

SEE'D
IvEA

N ~ = tJ IJ. t"\ ; EQ.. OF bflA..JC.+-\ 't. S

F = ~c A L ffic .~~

L'f:v :: ~~ ~ fL~ 0t0..J

[SEED
RT

(: F* : SL)
:AA/ :AD]

:NB :AA :F (:LEV- l)

:AA/ 2
:SL

LT
BK

END

300

.

,

.

,

IF

FD

LT

" I liked how the figures produced were not perfectly symmetric . I could

have put the following turn command into the REPEAT list structure of SEED:

RT : AA/ (: NB- l) . But I didn 't like what this produced . I liked my original

slightly wonky pattern .

/I After running SEED with various argument values, I decided to plug two

seed designs together. I wrote a little EXPLORE procedure to do this ./l

SEED : SL

To model

Try SEED

: LEV <

: SL

: AA / 2

REPEAT : NB

0 - (0 £ 1) C) ci CD C l) (0 (I)

Cl) CD CD

Chapter 7

Double seeds

302

Organic Designs

Seeds as tree clusters

" I thought I was designing seeds, but I suddenly saw the outlines of a cluster of

trees in the first image below . I erased some of the lines to make it look more

like several bushy trees growing closely together . I still don 't like the thin

trunks , though . I' ll draw in some better ones with India ink ."

303

Chapter 7

" these trees are interesting , but they still lack a feeling of

Introducing random components into trees

" OK , " I hear you say ,

life . Real trees are not as regular as the ones presented above .1I

Let 's introduce some randomness into these designs and see if that produces

more lifelike shapes . How can we do this ? We want to introduce a random

component into the drawing of the : A lengths , and perhaps into the turning

angle : T and the between - branch angle : BT .

What happens if : La and : HI are not integers ? Try some funny numbers .

FD RR (. 5 * : A) (1 . 5 * : A) would add some randomness into one of the

tree components . The actual branch length drawn would range from .5 to 1.5 times

the original value of the argument . Obviously , .5 and 1.5 are arbitrary ; you can

experiment with other values when we put everything together .

The problem now is how to insert RR into M. TREE. A first guess might be to

put RR after every FD, BK, and RT command . Would this be correct ?

We can answer this question by posing another : Is the following state

transparent ?

FD RR 5 10
BK RR 5 10

304

We might be able to use the procedure RR that was developed in Chapter 5

to generate random grids . Recall that RR takes two arguments, : La and : HI , and

outputs a random number that falls in the range defined by these two arguments.

TO RR :LO :HI
; To output a random number in the range :LO to :HI .
OP :LO + RANDOM (1 + :HI - :LO)

END

It certainly isn 't. RR 5 10 will probably give a different value in the two

situations . But we must move backward the same amount that we moved

Organic Designs

305

forward . Otherwise , we don ' t get back to the starting point , and state

transparency demands that we always get back to where we started from . We

require that the same random number be used for the FD and the BK command .

There are several ways of doing this :

MAKE " 0 RR 5 10

FO : 0

BK : 0

RECORD . POS

FD RR 5 10

RESTORE . POS

Let 's use the first method to handle the FD : A BK : A situations within

the REPEAT list structure . The RECORD . POS and RESTORE . POS can handle the

getting back to the base of the branch after all the other movements have been

completed . RR will be used in conjunction with the FD : A command , the RT : T

command , and the LT commands within the REPEAT list structure .

But be careful . The value for : D and : PO S (created inside the

RESTORE . POS procedure and needed by RESTORE . POS) must be unique for each

level of recursion . Why is this ? We can make these two variables unique and

tied to each recursion level by making : D and : POS local variables . (Review

local and global variables in your Logo manual .) Local variables exist only

within the lifetime of the procedure that gave them their value . Are you

happy about this ?

Notice , again , that I have removed the : B variable . It doesn ' t appear in

the following procedure . As I have said previously , I found that two size

arguments are not needed , and I also wanted to cut down on the number of

arguments . I have replaced the : B with : AI 2 as I did in the MF . TREE procedure .

Chapter 7

It H

-
C

D
0
0

I
C

D
t-
i

c
n

I
.

-

reasons .

: N

(1 . 5 * : BT)]

306

Randomized trees

TO RAND . TREE : A : N : T : BT : F : L

; To draw multiply branched recursive

; with randomized components .

IF : L < 1 [STOP]

(LOCAL " POS " D)

; For state transparency

RECORD . POS

FD RR (. 5 * : A) (1 . 5 * : A)

RT FD RR (. 5 * : T) (1 . 5 * : T)

REPEAT : N [MAKE " D RR (. 5 * : A / 2)

FD : D -

RAND . TREE (: A * : F)

BK : D -

LT RR (. 5 * : BT)

RESTORE . POS

END

(1 . 5* :A/ 2)

: T :BT :F

Again , please notice the use of the LOCAL command in the procedure 's second

line . We must have a value for : POS and : D for each level of recursion . These

variables will not , typically , be the same for each of the branches that make up

the tree. LOCAL tells Logo to keep the variable indicated tied to each level of

recursion . There will be a different : POS for each level , and there will be a

different : D for each level . Logo then uses the proper value for : POS and : D

according to the turtle 's recursion status. This application of local variables is

extremely important , but not obviously so. How do you feel about it ? Can you set

up an experiment to test out the logic of its use?

You might want to run RAND. TREE with line two removed (the line that

makes : POS and : D local variables). What happens to the turtle and why ?

Make a print of the result and put it in your notebook .

Organic Designs

Three series of random component crees

How will the random machinery introduced into the procedure RAND. TREE

actually work ? What will the designs look like ? In order to see the effect of this

randomizing , we must produce a series of designs, with the arguments fixed . The

differences between the individual designs will be due solely to the random

effects.

This exercise is similar to the random grid work we did in Chapter 5.

Remember the random placement of stars? Go back and take a look .

I 've written an EXPLORE-type procedure to produce a series of designs. I

have indicated the arguments used at the start of each of the series.

What have we done new in this chapter? I believe we have caught some of the

mystery of a living form when we mixed a little randomness into some strict

geometry . What are the implications of these tree machines? Whether or not

you choose to be philosophical about all this , I hope you can extend the image

ideas of this chapter to simulate the shapes of some other organic shapes.

Recapitulation

307

Organic Designs

RAND . TREE series lb

309

Chapter 7

RAND. TREE series 2a

RAND.TREE 30 3 30 30 . 75 5

310

Designs

 I

Organic

RAND . TREE series 2b

311

RAND . TREE series 3

Chapter 7

RAND.TREE 30 3 30 15 . 9 5

312

 .-

' :h
OJ

; -~~ .- - J

- .

 ~

Organic Designs

RAND. TREES with fruit

: FRUIT

313

I installed a RUN : FRUIT component into RAND. TREE and added a

argument. The following were produced using

FRUITED.RAND. TREE 60 : FRUIT 3 30 30 . 6 4

with : FRUIT set to asterisks, then to circles, and then to squares.

Our randomized trees look more like weeds than trees because the branches are

so thin . In " real " trees , the branches become thinner as they become shorter .

Design a Logo tree procedure that draws branches that exhibit thickness .

Make sure that this thickness decreases as the level of recursion changes . Here

are two examples of changing trunk thickness in nonrandomized trees . The first

example was consciously planned by a student , and you are given two designs

produced by it . The second design was " a mistake ," according to its designer .

Your job is to design either randomized or nonrandomized trees that

illustrate interesting variations in trunk / branch thickness . Try to do something

as different from the examples as possible .

Exercise 7.2

How about creating some tropical vegetation ? So far , even the sticklike weeds

and trees explored in this chapter are distinctively northern European . Let ' s try

designing a " leafy something " that you might expect to find in a tropical rain

forest or in a desert oasis . Here is a palm tree essay done by Paul , a computer

scientist . He selected palms because they " reminded him of holidays , blue skies ,

blue seas , and exotic countries . "

Paul characterized a palm tree in terms of the number of segments in its

trunk ; the rate at which these segments changed in size as the trunk lengthened

(see Exercise 7 . 1) ; the length of the trunk ; the " curviness " of the trunk and its

tendency to bend left or right ; the number of palm fronds in the tree ' s head , their

orientation , length , and composition . The procedure structure was made

recursive , and the arguments could be either fixed or random . Below are five

examples of Paul ' s palms . You may notice that the second cluster of three trees

has begun to flower !

Chapter 7

Exercises

Exercise 7,1

314

Organic Designs

Examples for Exercise 7.1

 ~

315

Chapter 7

Paul's palms for Exercise 7.2

316

. .

Organic Designs

317

' I

] ,;.: 'y.;:

'f"

Chapter 7

Paul then used a random placement of palm trees to simulate oases. The viewer

must be in an airplane .

;1,

\,

it;. ! :.. (',. "\
;"i' ~,. ~ J..

~ .. .

-:Ij' .~ (')'

'r 1.
~I .. ."."

. \ j'r _

J'" ';111':
I I

r ~'.

h;..
\

~i'

I!. f : , :
' ;'1:-

.

-j
';!;

, 'I'i
-i " '

\

. . .

318

Design a Logo tree -drawing procedure that prints a message on the screen to

indicate the level of recursion currently being drawn . Make sure that your tree -

drawing procedure has been slowed down , if necessary , so that the message can

be easily read . You may want to use different pen colors to indicate the different

levels of recursion .

Produce a complete graphic package that visually illustrates one kind of

recursion ; your package could be an effective teaching tool for introducing

recursion to those with no previous knowledge of it .

Exercise 7.4

Organic Designs

Exercise 7.3

What about leaves? One interesting way to try capturing the color and texture

characteristics of " leafiness" is to design pointillist trees. What are these? The

Penguin Dictionary of Art and" Artists tells us that "According to the color theory

of neo-impressionism , it is possible to obtain brighter secondary colors, such as

green, by making a series of tiny blobs of both primaries (which in the case of

greens would be blue and yellow) so that the blue and yellow blobs are very

closely intermingled but are not actually mixed . In this way , the colors mix in

the spectator's eye at a certain distance from the picture , giving a much brighter

and clearer green than is possible by actually mixing the pigments on the

palette ."

At least two other sensations are felt by the "spectator" when he or she

looks at a pointillist painting . First, the clouds of dots give the impression that

a surface texture exists; the eyes can feel it . And second, the individual dots

float in space, giving an illusion of depth . This floating occurs partially because

of the natural tendency of reds and yellows to move forward and blues to recede

from the viewer .

319

Pointillist paintings for Exercise

Chapter 7

7.4

320

Exercise 7.5

Organic Designs

What about curved sterns and branches? The following illustration is an

example of Japanese pen-and-ink drawing . Does it suggest Logo procedures that

use arcs to simulate plants? Review the arc procedures you were asked to work on

in the exercise section of Chapter 5.

321

George Seurat (1859-1891) is the best-known pointillist painter , but other

neo-impressionists of the late nineteenth century experimented with the

technique . Pointillist paintings are hard to " read " in black and white

reproductions ; the color mixing and dot floating don't work ! But you can get an

"impression " of the method and the textures produced . I have reproduced here

Seurat's "La Seine a la Grande-Jatte" ; and second, Henry van de Velde 's (1863-

1957) "Faits de Village VII - La ravaudeuse."

One student saw the problem of building a pointillist machine this way :

"OK, let 's use colored dots to represent the flash of color that might be reflected

from the tree's leaves. I will draw the reflected dot -lights and not worry about

drawing the individual leaves. Perhaps I can mix a number of different colored

dots together in the manner of Seurat. I can place the dots randomly , too, to give

a fluffy , organic shape. The randomness may give the tree a feeling of depth as

well . I think I will also try to indicate the direction of the light source - from

the sun; the side of the tree facing the sun should include more red dots, while

the side that would be in the shade could have more blue dots."

Hint : Rework the procedures placed into the : FRUI T list . Make them

capable of randomly placing a certain number of colored or textured dots in the

"vicinity " of the current turtle position . The procedure RR will be useful for this .

For the selection of colors or textures, you may want to give a probability of

picking one color or texture over another . Look back at the procedure P . GET in

Chapter 5 for some ideas on probabilistically picking things from a list . Don 't

forget to make the : FRUIT list state transparent .

Chapter 7

Japanese pen-and-ink trees for Exercise 7.5

322

Organic Designs

Exercise 7.6

What about curved roots? Here are two technical line drawings of plants , both

tops and bottoms ! Can you characterize these plants in terms of a few arguments?

How can you design and use arc drawing procedures?

Hint : The procedure RR might be used to generate random arguments for your

arc drawing commands.

/'

323

Exercise 7.7

There are dozens of other tree characteristics that you could model . The manner

in which architects draw trees should suggest some of these alternative tree

qualities to you . Architects surround their model buildings with model trees, and

the next several pages show some typical architectural renderings . Note the

different approaches to treeness. Pick one that strikes your fancy and design a

Logo model to do it . These designs are taken from Bob Greenstreet's Graphics

Sourcebook (Englewood Cliffs , NJ: Prentice-Hall , 1984).

Warning : The best illustrations to use for drawing trees are real trees. Go

outside now and look at some.

Chapter 7

Architects ' trees for Exercise 7.7

324

:;~.: -:':'.
, . , \ . " ,

:,'.:' .' . ' . .'ff;.;;::."':...,::.,'.' .' ,'
. , " " . '

~::~,'.:~.... ,.:,:.::,:.3}~~~~,~~::',::::..' :',
. ' , . " vl ' ~(. " " ' . ' . . ' -

. .. . ' . . " ~ ., ~" , ., ' . . ' , ' , . 1: , . - ' . . , ,

... .tit . ' " . . ~ ,. " , . , 1, . , ' . " ". ' . ' . " " . " ' , . . ' . - . , . . ~ , ,

.t" . " " . " " ~." '(o\ "."' "" ." " " ," . . ' " / : - ~ . ' . . . , . " " . , " - ,
" " . , ' . . , ' : , I " ' ~J , ~ ' ; ? ' " ' . " ' . . , , , . , , ' . .[!:"A(.! ;";";'l "t :!;~ ~,' -'):.~ ~ ~.:'; .: ~ >::::::.,\.'.'

i "~ " " " ;;" " "" V ':..." "" ..' ~ . ' .. ' ...")o: ;. .\ " '-:...." ! " .~ .o;o; " ' ~ ...,,","<--1':""_ .

Exercise 7.9

Former students have done some very interesting " Logo jobs" on fruit and

vegetables. Some vegetables literally cry out for recursive techniques. You don't

believe me? Go look at some artichokes, cauliflower , broccoli , asparagus! Others

scream for the " oid " treatment introduced in Chapter 4 with nephrQi.d.s and

cardiQi.d.s: go look at apples, pineapples , oranges, carrots, bananas, carrots,

radishes, leeks, and turnips .

Design Logo procedures to produce a suite of designs based on the

characteristics of a single favorite (or hated) fruit or vegetable. No visual hints

here: go look at the real thing .

Organic Designs

Exercise 7.8

Imagine yourself looking across a small lake. A single tree is growing on the

shore just opposite you. It is night, but a full moon illuminates the tree and this

image is reflected in the water. A breeze agitates the surface of the water.

Design a Logo model that draws both the tree and its reflection in the lake.

Include an argument for the velocity of the breeze.

Exercise 7.10

Pick two different fruits , vegetables, or trees. Show how a single Logo procedure

can draw either of the two items, as well as shapes exhibiting characteristics of

both .

For example, suppose you picked a pine tree and a cauliflower . Your Logo

procedures must be capable of drawing both a pine tree and a cauliflower . But

your procedures must also draw figures (" caulipines " ?) that are transitional

between a pine tree and a cauliflower (a pine tree on its way to becoming a

cauliflower). Or a cauliflower metamorphosing into a pine tree.

325

Chapter 7

Pick your two objects and fill several pages of your notebook with sketches

before you do any Logo programming . Do something thoroughly ridiculous , but

correctly so.

Exercise 7.11

326

What about flowers and gardens and fields of flowers ? As you may have

noticed, I usually suggest two ways to begin Logo projects like this one. First, you

could go out and look at nature. In this case that would be studying "real"

flowers and gardens. Second, you could look at a drawing or painting of flowers

and gardens. Paintings of flowers are, of course, also real and help us to see better

the garden behind our house.

Let me suggest one artist who uses flower fields in almost all of his work . As

always , I offer you my own taste in artists . You may see something in these

reproductions that will start you off in some interesting direction . Then again,

you may want to find your own artist to explore.

Gustav Klimt (1862-1918) was an Austrian painter who worked in turn -of-

the-century Vienna . I am sure you have seen paintings like "Poissons rouges" of

1901/ 2, which is reproduced on the next page. Here Klimt contrasts flat

geometric motifs with the molded skin textures of the very human forms . The

contrast , even in this black-and-white reproduction , is striking . Each pattern

type, the human flesh and the geometric forms , is made more vivid by the

presence of the other.

On the page following is a painting in which Klimt uses only flower

patterns; it is "Rosiers sous les arbres" of 1905. This sort of painting lacks visual

excitement . There is no focus, no contrast. No surprises ! Study this decorative

work , though , to see how the artist has placed his flower patterns on the surface

of the canvas. I would like you to Logo-produce Klimt -like flower fields , but add

a surprising point of contrast . If you use naked ladies , model only a few

characteristics .

O
rg

a
n
ic

 D
e
s
ig

K
lim

t

:)U>

~.....-~n0~-~~U1-.....~OQ-r'J~=~r'JU1

>

CoA)

~

"'..J

Chapter 7

A decorative Klimt
~ N Q)

Try modeling one specific flower . Pick

personality , one that can be easily identified

sunflowers , hollyhocks , iris , daffodils , tulips ,

Exercise 7.14

Organic Designs

Exercise 7.12

Exercise 7.13

Surround your plants with a few insects . Butterflies , moths , ladybugs ,

dragonflies , beetles, and fireflies might be nice.

Exercise 7.15

What could be more organic and more relevant to visual modeling than the

human eyeball? Take a close look at your own eyes in the mirror . Make special

note of the colors and patterns in your irises. Usually , on close inspection , you

will find that your two eyes are different from each other and quite irregular in

themselves. Design a Logo model of your own eyeballs. Generalize it to simulate

a wide range of eyes that include those of your cat and tropical fish .

329

a flower that has a vivid visual

from a distance . Some suggestions :

daisies , lilies .

We 've avoided animals so far . But what about some odd sea creatures ? There is

a snail -like creature among the imaginary P IPEGONS of Chapter 2. Find an

illustrated text on sea creatures and model something like squids , jelly fish , sea

urchins , or sea anemones . Something living inside shells might be a challenge ,

too . Keep the modeled sea creature characteristics few in number - at the start .

Chapter 7

Exercise 7.16

"l
W

2

8
5

330

Recall the FRACTALGONs of Chapter 4. We changed polygons into FRACTALGONs

by changing the nature of their edges. We replaced the polygon 's single ,

straight -line edge with an edge composed of four straight -line segments. We

then replaced each of these four straight -line segment with a smaller , four -

segment edge. And then each of these segments was replaced with smaller, four -

segment sections. We continued to break down - or fractal- single line segments

into multiple line segments until we arrived at the odd, fuzzy shapes illustrated

under the heading "Some curious FRACTALGONs" in Chapter 4.

There was nothing special about replacing the straight polygonal edge

with a four -segment shape; we could have used other pattern combinations of

straight -line segments. But no matter what edge shape we selected, we would

have followed the fractal scheme of replacing the parts of an edge with

miniaturized versions of the overall edge pattern .

Let's experiment with an alternative edge pattern , and let 's also introduce

some randomness into fractal designing . Take a look at the following figures .

Can you guess what is happening before reading the description below?

Organic Designs

331

Start with the large triangle , figure 1. Imagine that a circle is drawn on the

midpoint of each of the three triangle edges (figure 2). Now pick a random point

within each of these three circles (figure 3), and use these points to break

("fractal ") the original triangle of figure 1 into the four triangles of figure 4.

Look at each of these four triangles . Imagine that a circle is drawn with its

center placed on the midpoint of each of the edges that define each of these

triangles (figure 5). Now pick a random point within each of these nine circles

(see figure 5), and use these points to fractal the four triangles of figure 4 into the

sixteen triangles of figure 6.

We could continue this fractaling to any level and see what happens. But,

first , what about those circles? How big should they be? The radius of a circle

should be related to the length of the line on whose midpoint it rests. Therefore,

the circles should get smaller as the fractaling progresses . The specific

relationship of the circle size to the edge length could be given by some factor,

call it F. The larger the value of F, the more deformed the figure could become.

Now suppose we begin with a double triangle , similar to figure 8. What

will the fractaled figure 8 look like ? Here are four examples. The F factor was

kept constant for each. The differences between the figures are due solely to the

random component. Can you guess what level of fractaling was used?

What do these images look like ?

Chapter 7

Fractallandscapes 1

332

Organic Designs

Fractallandscapes 2

333

Chapter 7

I' ve also decided to allow some rain to

334

Fractallandscape before and after some rain

Here is one further level of fractaling .

fall on the landscape. What is happening ?

Organic Designs

More rain

(.
.)

(.
.) U
1

, ~

Chapter 7

What 's going on here? Are these scenes really mountainous ? The last figure

looks like a scene you might see flying into Hong Kong . Why does the eye read

these figures as three-dimensional ? Where is the eye in relation to these scenes?

How would you color in all those little triangles so that they won 't look so

much like chicken wire ? How many triangles are there, by the way , in those

figures? Recursion is obviously being used; can you give the number of triangles in

terms of recursion level?

Can you put together a plan for experimenting with these visual ideas?

What about a fractal mountain machine; would that be possible? What do you

think the major problems would be? Put together some exploratory building

plans .

336

Chapter 8
Space

"The question [is] whether space is real apart from space-filling objects."

W. T. Harris

Reading objects in space

Most of our work so far has been flat and two -dimensional . Our only real

excursion into planning depth characteristics was the overlapping Islamic tile

designs of Chapter 6. But even this was really only two -dimensional motif

manipulation . However , even though we haven't been much concerned with

spatial modeling , some of our line drawings occasionally seemed to float into

three dimensions : recall some of the lacy, random tree shapes of Chapter 7

and- especially- the nephroid designs of Chapter 4.

Take a look at the series of circle-based nephroids below . Even though you

know that these are perfectly flat figures , do you have the impression that they

are also three-dimensional and that one nephroid can actually be placed inside

another? Why is this? Nephroids are ambiguous shapes (flat and rounded), but

because the brain lives and works in a three-dimensional world , it resolves the

two -dimensional ambiguity of nephroids by placing them fully into 3D space;

nephroids are good examples of the brain adding space in order to read an object

better. Spend some time following the lines of these odd images.

Chapter 8

Intentional depth cues

338

This chapter will concentrate on some of the ways in which depth

characteristics can be explicitly designed into object scenes. Art students already

know how two -dimensional paper and canvas can be made to simulate space

through a wide variety of methods and systems, many quite arbitrary . They

know this because they have played with alternative spatial systems and

conventions . If you are not an art student , you may be coming upon these ideas

without such first -hand experience. So, before you are ready to incorporate

depth cues into modeled scenes, you need to explore how your eyes read and

interpret different forms of depth information .

We will be looking at several depth cues in this chapter : placement ,

shading , size variation , shape overlapping , and vanishing point perspective .

The models of the chapter provide environments in which you can watch

yourself reacting to messages from things in space.

Space

Enclosing nephroids

339

Chapter 8

Surface shading

The following design element was much used by the Dutch artist and designer,

M . C. Escher. How should the eye read this figure ? Is it a flat design, a box seen

from the outside, or a box seen from the inside? The design is ambiguous, and the

eye switches from one interpretation to another.

The placement of several objects into a scene can sometimes resolve

ambiguity . The Escher box, however , becomes more ambiguous when it is placed

into a composite of similar shapes.

340

C) CD co

Modeling

Space

a shaded Escher box

343

Let's write a procedure , E . BOX, to draw an Escher box and then shade it . We

will want the procedure to be general enough to draw different -sized boxes and

to alter the quality of shading on each of the three visible surfaces. The figure

itself is easy enough: a hexagon in which a Y shape is placed. The procedure

E . BOX has two arguments , : SIZE and : SLIST .

: SIZE is the radius of the hexagon that encloses the Y shape; it is also the

length of the three arms of the Y.

: SLI ST is a list that has three elements , one for each of the three visible

faces of the box. The order of the faces is: top, right , and left . The shading is to

be accomplished by drawing equally spaced parallel lines on each of the faces.

Of course, the number of shading lines can be different for each face. The number

of spaces between such lines, one number for each face, is to be placed inside the

: SLI ST. For example, an : SLI ST of [1 1 1] should draw the unshaded box;

each face will have only one space since an unshaded face has no lines . An

: SLIST of [2 2 2] should produce a box with two stripes of space on each face:

If the elements in the list are equal to the : SIZE argument , each of the faces

should be filled completely with the current pen color- black, in my case. Here

is what E . BOX 50 [50 50 50] should look like .

The Escher box procedures

Chapter 8

TO E .BOX : SIZE : SLIST
; To draw a simple Escher box with parallel
; line shading . : SLIST must be a three - element list .
; Each element gives the number of between - line
; stripes on one face .
LT 60 PD
REPEAT 3 [SHADE : SIZE (FIRST : SLIST) -

RT 60
CNGON6 : SIZE

TO SHADE : SIZE : STRIPES

; To shade a single face of an Escher box

RESTORE.POS

I didn 't go through a turtle walk for the shading , but the method is clear.

Next, let 's put E . BOXs into a grid . This is similar to work we did in Chapter 6. In

the following diagram the asterisks mark the centers of the E . BOXS. We need to

calculate the appropriate horizontal , vertical , and indent distances between

these asterisks in order to build a demonstration procedure using RIFLAG.

344

MAKE "SLIST BF :SLIST
RT 120]

END

; with parallel lines . The
; actually drawn will equal
LOCAL liD
MAKE liD : SIZE / : STRIPES

number of

: STRIPES .

lines

END

RECORD.POS
REPEAT :STRIPES [FD :D RT 120 -

FD : SIZE BK :SIZE
LT 120]

Space

345

Because the E . BOXs are placed at the vertices of an equilateral triangle ,

we need to recall the relationship of the height of an equilateral triangle to its

edges: height = edge*cos 30. Go back to Chapter 6 a minute and review the

mechanics of NEST. DEMO, TP . DEMO, and SAW. DEMO. These three procedures

were also based on the equilateral triangle . Verify the calculations used in the

following :

TO SHADED . DEMO : SIZE : COLS : SLIST

; To grid a series of shaded E . BOXs

(LOCAL " EDGE " VERT)

MAKE " EDGE 2 * : SIZE * COS 30

-MAKE " VERT : EDGE * COS 30

MAKE " MOTIF [E . BOX : SIZE : SLIST]

GO . PT

RIFLAG : COLS (COUNT : COLS) : EDGE : VERT (LIST (- 1 * : EDGE / 2) 0)

END

One final note about my kind of surface shading . I could have used other

conventions. On the next page is one example of an alternative scheme.

 - .
- - " ~

Look at the following grid of shaded Escher boxes . The grid is clearly composed

of three rows of boxes , but how are the rows related in space ? Is the top row

floating in space above the middle row , or is it sitting on a surface and located

behind the middle row ? And if the three rows are sitting on a surface , is that

surface flat , inclined , or stepped ? This row placement is clearly ambiguous .

.

Chapter 8

Placement ambiguity

346

Space

Size variation

C> e

347

One of the easiest ways to control the illusion of objects in space is through size

variations . An object close to us is bigger than an object farther away . So

differences in size can be read as differences in distance. This works fine for the

space placement of objects of the same diIriensions; but it is more difficult to force

a single space interpretation of objects of different real dimensions , and ambi-

guity creeps in . For example, try to read the following two scenes. Because the

shading on the boxes is the same, the eye guesses that the boxes have the same

real size. Hence, the size variations are read as cues about the scene's depth, and

the top row becomes the farthest away from us.

But there is an alternative reading . The top row might be small boxes that

are floating above the slightly larger boxes of the middle row that are floating

above the slightly larger boxes of the bottom row . Force your eyes to read the

scenes in these two alternative ways. Which way seems to be the eye's preferred

view ? Why ?

~ ~

Chapter 8

Multiple motif grids

Can you guess how the last scenes were produced ? I tinkered with the gen-

eralized grid machine RIFLAG so that it could draw grids of multiple motifs . I

wanted to have a different motif on each row . Then I could draw rows of

different -sized (or shaded) E . BOXs to explore the illusion of receding objects . . .

or whatever . I include my modified procedure to remind you about the usefulness

of tinkering with the machinery you already possess, to make procedures do

their jobs a little differently .

The modified machine is called RIM . FLAG for recursive , indented ,

multiple -motif flag . It expects a composite motif list that is composed of several

list elements: there must be one motif list for each row . For example, this was

the motif list used for one of the previous scenes.

MAKE "MOTIF [[E.BOX . 5* : SIZE [3 6 9]]
[E.BOX . 7* : SIZE [3 6 9]]
[E.BOX :SIZE [3 6 9]]]

-

-

Here is RIM . FLAG and its supporting procedures.

348

TO RIM . ROWER : C :N
IF :N < 1 [STOP]
RUN FIRST :MOTIF
; To handle the multiple
CSTEP : C
RIM .ROWER : C (:N- l)

END

Overlapping shapes

figures?

Space

TO RIM . FLAG : COLS : ROWS : CDIST : RDIST : IN

; RIM . FLAG expects : MOTIF to have multiple
; motif lists : one for each row .

:CDIST : RDIST (ROT : IN)

motifs .

TO RIM.RSTEP :R : IN
PU SETX (FIRST :POINT) + (COUNT 1 : IN)
RT 180
FD :R LT 180 PD
MAKE "MOTIF ROT : MOTIF
; To place the next motif into position for RIM.ROWER.

END

TO CSTEP
PO RT 90
FD :C
LT 90 PD

END

: c

There is no ambiguity about the

behind and slightly higher than

349

IF :ROWS
RIM.ROWER
RIM.RSTEP
RIM.FLAG

END

Look at the following grid of Escher boxes .

location of the boxes . The top row is clearly

the bottom row . But how can we draw these

< 1 [STOP]

: CDIST (FIRST : COLS)

: RDIST : IN

(ROT : COLS) (: ROWS - l)

Chapter 8

The painter's algorithm

RT
END

60

TO NIGHT . SHADE : SIZE

RECORD . POS

PENERASE

; Depending on your computer and Logo dialect , you may

; you may have to increase the pen width

; to erase the box space

REPEAT : SIZE [FD 1 RT 120

FD : SIZE BK

LT 120]

RESTORE . POS

PENPAINT

350

END

fully .

: SIZE

What we need is the so- called painter 's algorithm . Why so-called? Because the

method was dreamed up by computer scientists; this is how they think painters

handle overlapping scenes. Hence the algorithm 's instructions for the painter -

turtle . First , determine which objects are farthest from the viewer and paint

these onto the canvas. Then determine the objects just in front of the painted

objects and paint those onto the canvas. Continue with this layering until you

have included everything in the scene up to the viewer 's nose. Use opaque paint ,

though , so that no object appears peeking through a layer of paint . Is this how

human painters really work ? Could they do it this way if they wanted to?

Whether or not this is the method real painters use , let 's build a visual

model using it and then draw some overlapping shapes. The first problem we

encounter is how to make the turtle paint shapes that are totally opaque. Here

is one way . Select the screen position where you want to draw a shape. Erase

everything within the outline of the shape and then draw the shape onto this

"opaque spot." The following procedures handle these tasks for E. BOXs.

TO BLACK . BOX : SIZE

; To erase everything within the outline of an E . BOX .
LT 60

REPEAT 3 [NIGHT . SHADE : SIZE -

RT 120]

This assures us that if any image falls on top of a previously drawn figure , the

overlapped segment is fully erased before the second object is painted onto the

spot .

Let's try

Space

Overlapping grids

RIFLAG [3 3 3] 3 (lOO*COS 30) 50 [0] .

351

Let's organize a three-row , rectangular grid scene according to the following

depth convention : the top row will be the most distant , the middle row will be

in the middle distance , and the bottom row will be closest to the viewer . Our

grid machine must paint the top and farthest -away row first , and then the

second row of intermediate -distance objects, and lastly the row of nearest objects.

If any objects in the second row overlap objects in the first row , the painter 's

algorithm should take charge and paint one figure over the other . We will need

this help , too, with the third row , in case any third -row objects overlap any

first - or second-row ones. How can we make this happen ? By defining the

: MOTIF list in the following manner:

MAKE : MOTIF [BLACK . BOX 50 E . BOX 50 [3 6 9]]

Chapter 8

RIFLAG [3 3 2] 3 (10 + 100*COS 30) 50 [- 20 40] .

352

Oops. The figure is interesting but hard to read. Try moving the objects about in

space a little to see if you can eliminate the ambiguities of the first image. See,

for example, if it is easier to read

Space

A short box play

353

Once all the figures cease to overlap , even the painter 's algorithm fails us.

What is happening below ? It 's hard to say. We need some additional indicator

that says whether all those boxes are sitting on the same surface or whether the

top tier is floating over the bottom tier . What we need is perspective.

Perspective

Most of you are already familiar with the jargon of the perspective systems

invented during the European Renaissance. You may have some notion of what

foreshortening means, as well as an idea about vanishing points . But let 's

investigate perspective empirically , with a few experiments .

Find or make a wire frame model of a cube with edges of about 6 inches.

Hold the cube so that you are looking directly at the middle of one of its faces.

Chapter 8

Ambiguity again

354

(0

lS:J

Space

Make sure that you hold the cube so that your line -of -sight forms a right angle

with the face you are looking at . Hold the cube very near your face and record in

your notebook what you see. Now hold the cube as far away as possible and

record what you see. Your sketches should look something like these :

0 D

0

Do the same as above, but with the cube moved to the right .

0

Do the same again, but lower the cube and move it to the left and then to

355

Now , again look directly at the center of one face held at a right angles to

your line -of -sight . This time , move the box horizontally to the left . Record your

views .

Chapter 8

the right :

356

0 0

0 ~ (
D I

~ 0 ~
.

~ -

~ (
D ~ ~ (
D

n - ~
.

< (
D

0

0

0

You have just been witness to the operation of one-point perspective. The

following sketches indicate the construction of a cube drawn with one-point

perspective. Where is the viewer in each of these drawings?

Three-point perspective

Space

Two -point perspective

Carry out the same experiments again , but rotate the cube so that you are looking

directly toward an edge rather than a face . Keep the edge vertical . The

following is what happens . Where is the viewer located in this scene?

G <:)

' "~/ '

\ / "

 50 \.10 Cu BE

\
/

357

Finally , carry out the drawing experiments again, but rotate the cube so that no

edges are vertical and no faces are at right angle to the line -of-sight . Yes,

you 've guessed it : three-point perspective. But where are you in this scene? Why

are vanishing points called vanishing points ? Can you generalize the per-

spective rules of the last several pages?

How could we draw a one-point perspective version of a cube? But let 's be more

general than that . What about polyhedrons ?

Suppose that a single vanishing point has been defined as a two -element

list . Let 's make it a global variable and name it : VP. The two elements will be

the x and y coordinates of the point . Now let's draw a 3D CNGON. Whenever the

turtle arrives at a vertex of the polygon , it should record its current position and

then point toward the vanishing point . Next , send the turtle forward by an

amount that corresponds to the CNGON's thickness and then return to the recorded

position . Now go on to the next vertex, and so on. In Logo terms, these rules would

translate into something like the following :

Chapter 8

00

' "

~
/ ' "

/

/

SOl-It> CI-\&E:

~

~

1

0

Modeled one-point perspective (almost)

358

paces

TO NHEDRON :N :RAD : THICK

; To draw a " kind " of one - point perspective
; rendering of a 3D CNGON.
LOCAL " EDGE MAKE " EDGE 2* : RAD* SIN (180 / :N)

(90* (:N- 2) / :N) PD-

REPEAT :N [FD :EDGE RT 360/ :N
-

SETH TOWARDS FIRST :VP LAST :VP
-

RESTORE.POS]
LT 180 - (90* (:N- 2) / :N)
PU BK :RAD PD

END

This procedure will draw figures similar to the following :

Drawing the NHEDRON'S back face

Now , how do we connect the ends of those lines that have been drawn toward

the vanishing point ? If we knew the x-y positions of those ends, we could draw a

line from the first end to the second, from the second to the third , and from the

third back to the first . How ? Maybe we could store these end point locations in a

list . If we could put them all into a list , we could join them all together -

somehow. The following procedures will let us do precisely this.

359

PU FD
RT 180

: RAD

RECORD. POS

FD : THICK

TO EMPTY.BAG
; To create a global variable named :POINT.BAG and make
; sure that it is empty .
MAKE "POINT. BAG []

END

MAKE "POINT. BAG (SE : POINT. BAG XCOR YCOR) ,-
END

Chapter 8

TO ADD. POINT

i To put the turtle ' s current x - y location

TO CONNECT : LIST

; To connect the x - y point stored in a list .
IF EMPTY? : LIST [STOP]
SETXY (FIRST : LIST) (LAST : LIST)
PD
CONNECT (BF BF : LIST)

END

.
.

.
.

.
.

.
.

.
.

.
.

.

.

.

. . . .

.
.

.
.

.
.

.

360

: into the :POINT.BAG.

Space

Completed NHEDRON

Let's put the new list apparatus (indicated by <- - -) into the body of NHEDRON:

TO

SETH TOWARDS FIRST :VP LAST :VP

< - - -

< - - -

The images in the left column of the next page are drawn with a vanishing point

that can be marked on the screen with an asterisk . The vanishing point was

created by MAKE "VP [2 0 0 150] . The images in the right column are drawn

with a more distant vanishing point that cannot be marked on the screen. It was

created by MAKE "VP [800 600] .

Explain the differences between these two scene sequences in words . Be

specific .

361

RECORD. PO.'>

FD :THICK -
ADD.POINT -
RESTORE.POS]

LT 180 - (90* (:N- 2) / :N)
PU BK :RAD PD
RECORD. POS
PU CONNECT < - - -

; Connect last

RESTORE . POS < - - -

END

NHEDRON : N : RAD : THICK

; To draw a " kind " of one - point perspective

; rendering of a 3D CNGON .

LOCAL " EDGE MAKE " EDGE 2 * : RAD * SIN (180 / : N)

LOCAL " POINT . BAG < - - -

EMPTY . BAG < - - -

PU FD : RAD

RT 180 - (90 * (: N - 2) / : N) PD

REPEAT : N [FD : EDGE RT 360 / : N

(FIRST BF :POINT . BAG)
to first end point .

< - - -

: POINT . BAG

SETXY (FIRST : POINT . BAG)

end point

One - point perspective experiments

distan

Chapter 8

Near and It vanishing points

~
\ *

,..;'1

?

-:,.~
/

l ~

~

2.~

,....;"

~
\

~
i

--
--

 ..;"

4-0:-

362

It :"

2..~

Space

More one -point perspective experiments

Explain the following in words . How do you interpret the placement cues? How

were the images created ?
~

f,)

.
.

~ *
.,,?I

363

[IIJ[] []
[IJ[] [I]
[] [J][Q

[]][IJILIJ
[] [] []
[] [] []J]

--,, *

l '

~ *

l '

(2)
c
0
0

Chapter 8

Tumbling NHEDRONs

~
~
~
~
~

'<2>
tl:ll
!]:J)

~
~
~
~
~

~
tl:l;
{t:JJ

~
~
~
~
~

~
~

~ ~ 0
a
0
0
0

~
~
~
~
~

00
~
~
~
~

Q
0
0
0

364

~
!l:JJ
~
lDJ~ ~ ~
1lJJ[] Q; ~

~
~
~
~

Q
a
0
0
0

<q]
~
"'<tl
~
~

~
<cD
~
~
~

NHEDRON doesn 't really draw correctly , does it ? The one -point perspective

system that NHEDRON uses is not classical one -point perspective . The line

lengths aren 't correct , and shapes near the vanishing point are badly deformed .

But does this matter if you can read the placement message ? NHEDRON 'S

deformations are space data , after all , and rather more expressionistic than

" correct " foreshortenings .

What is most important : to draw a scene exactly as it would look on a

photograph or to express the quality of its space relationships in a way that

might be understandably original ? You know my answer . If you want a

photograph of cubes , that 's OK . If you want to think about cubes in space, then

consider building a space-cube model with a bizarre perspective system .

Recapitulation

This chapter introduced the idea of adding depth cues to images. We modeled

Space

NHEDRON " mistakes "

365

several varieties of such cues so that you could see how your eyes responded to

them . I hope you were surprised , and pleased , to be able to watch yourself doing

something about which you probably had little previous knowledge . Visual

modeling can be very tricky and very revealing .

And now that you have learned something about your eye 's conception of

space, work with your new colleague on the exercises that follow .

Chapter 8

Exercises

366

There are ten exercises for this space chapter. Be outlandish , flamboyant , and

singular , but do it all multidimensionally .

Exercise 8 .1

Design an Escher box-like shape that is composed of triangles . What about

pyramids ? A pyramid is any shape that has a polygon for its base and triangles

for its sides. Build a pyramid model that will shade and place your objects in

space. You may want to include the ability to overlap pyramids using the

painter 's algorithm . Use the model to produce a variety of pyramid graphics .

~ fnve to m ~ f<e eaTh ~~elle ~s tl)~~e' te! l\ ' troTh \' :ne <Ij& eY~ d ~ 1>' lf~~}ull'"t:", ~ ' U7{\ "\Jv<t::i \Wf ..

" jrnnossjbIe " nvramids .
."

The real exercise is to explore how we see pyramid -ideas in space, so don 't

forget to comment- in prose - on what you have learned . Does your eye read

pyramid shapes differently from the way it reads the box shapes investigated

in the chapter? Why might this be so?

The following pages suggest one approach to this exercise; in fact, it 's the

way I did it . You might like to review my geometry , but probably you will want

to model pyramids differently .

Space

Shaded pyramids in space for Exercise 8.1

367

~ ~ ~
. ~

~ ~ ~

~ ~ ~
~ ~

(/!}~ ~

Study the following figures . Imagine that the pyramid is hung , like a

Christmas tree ornament , from its apex. See figure 1 on the next page. Image the

turtle to be at position (1), pointing downward . If we can tell the turtle how to

draw the leftmost triangular face of the pyramid , it will know how to draw the

remaining ones.

But first , how shall we define the shape characteristics of the pyramid

that we want the turtle to draw ? See figure 2. I have selected the lengths of the

visible edges of the pyramid (the "a" s) and the angles that separate these

edges (the "a"s).

Second, how shall we indicate the kind of shading we want on each face?

See figure 3. I will want shading lines tha t are parallel to the base of each face

(the "c" s), and I will tell the turtle the number of such lines I want per face.

OK, let 's get back to structuring the turtle 's walk through the first face.

Figure 4 shows the bits we need to rela te. We know a, b and a, and we will need

to calculate the rest. The page after next gets on with it . If you can't follow my

method , or if you don 't want to, you are ready to find your own approach. Pick

whatever comes naturally to you , but try to be as simple and straightforward as

possible .

Chapter 8

Geornetr~ and trig for rn~ shaded ~~rarnids

368

Figures for my shaded pyramids

Space

M

b ,

b

[i~I}

[}I~J
369

calculate

angles of any triangle sum to 180 degrees

Chapter 8

Calculation of the parts

Suppose we know a, b, and a.. We need to ~ c and ~:

1. h is the height of the triangle . It meets side b at a right angle dividing it into
two segments: bland b2.

2. SIN a = h/ a
- -- > h =

- - >

5. TAN <I>= h/ b2

---> 4> = arctangent h / b2

(180 - ~)
= 0

<I>

< - - - -

Now look back at figure 3. How do we calculate cl and c2? The parallel "c" s

divide the large triangular face into smaller but similar triangles . Remember

the business about parts of similar triangles from geometry?

Using the idea of similar triangles , we can say that cl is to c as al is to a

(cl / c = al / a). So cl = (al / a)*c.

Finally , note that the turtle (already pointing downward) must turn right

by the angle e before drawing the "a" edge of the first triangular face.

370

a*SIN a.

b2 = b - b 1

= 180

6 . The interior

- - - > a. + <t> +

- - > a. + <t> - ~

- - - > ~ = a. +

This gives us ~

7 . SIN <t> = hI c

- - - > c = hlSIN <t>

This gives us c < - - - -

3. cas a. = bI / a
---> bI = a*CaS a.

4.b = bI +b2

Exercise 8.4

Space

Exercise 8.2

Cubism was an art movement of the early twentieth century that attempted to

give a visual account of the entire structure of objects in space. In practice this

meant superimposing and combining several views of the object, all within a

space limited by the dimensions of two -dimensional canvas. The goal was to

project the idea of an object in space without being constrained to show it from a

single point of view . Cubist practitioners included Picasso, Braque, and Gris .

371

Shading techniques should be related to the shadows that different kinds of

light sources would create within a scene . Try to incorporate light source

arguments into an Escher box scene model . You will need to think about the

placement of the light source as well as the intensity and quality (color) of the

light produced .

Exercise 8 .3

The Escher box motif is only one symbolic way to express a cube . There are many

alternative ways , and I have included one below . Devise a number of different ,

visual idioms for representing cubes in space . Design a model to speak your

idiom .

Find a few postcard reproductions of cubist works that you like and explore the

images with Logo models. Comment on how you have characterized cubist space

in your work .

Exercise 8.5

What is the room that you know best? Perhaps it is your bedroom, workshop , or

study ; but it could also be an outdoor enclosure: a greenhouse, gazebo, or garden

shed. Build a Logo model to document the shape and spatial qualities of this

room. Keep your spatial vocabulary spare but expressive.

Here is the most expressive example of a personal room model that I have

in my postcard collection: Van Gogh's asylum bedroom.

Chapter 8

372

Exercise 8 .6

Produce a shaded sphere, cylinder , or prism . Be innovative . Don 't rely on the

shading ideas of the chapter; invent some new ones never seen by Earthlings .

Exercise 8 .7

Produce a landscape of a variety of shapes, all consistently shaded and

perspected. Explain what you mean by consistently, though .

Exercise 8.8

Space

373

What about two - and three - point perspective ? Can this be done easily with

Logo ? Can it be done at all with Logo ? Try to explain how you would go about

doing it . Then do it .

Exercise 8 . 9

How about designing your own space ? On the following pages you will see some

space creations by the Hungarian artist Tamas Farkas . Don ' t believe the claim

that they are " impossible . " Compete with Farkas by designing your own

impossible space grids .

Chapter 8

Farkas grids 1

374

Space

Farkas grids 2

375

Chapter 8

Farkas grids 3

376

pace

Exercise 8.10

We have drawn figures that look as if they have three dimensions . But what

about four (or more) dimensions ? Let 's review everyday space with a few

drawings . We can start with a single point : see (I) below . No dimensions in a

single point , right ? If it 's very tiny . Next , draw a horizontal line from it toward

(2). We have a one-dimensional line .

s

C,) (2.)
.) .

Now , pull this line downward , parallel to itself , like a window shade ,

toward the line (4)- (3) . Connect the vertices . Now we have a square figure that

is two -dimensional . We could call it by a fancier name , a plane , but either way ,

it 's clearly two - dimensional . Next , let 's pull this plane into three dimensions .

Obviously , we must rely on some drawing conventions to force three dimensions

from two - dimensional paper . We can use the conventions of this chapter to fool

the eye about this . So , pull the plane , (1) - (2)- (3) - (4) , " forward " into three

dimensions : illustrate this by pulling it , parallel to itself , down and to the left :

(5)- (6) - (7)- (8) . Connect the vertices . We have a three -dimensional cube .

< \ > (' 2.)

. .

(4-) (3)

377

Now, for the fourth dimension. Of course this can't be done. But let's

diagram the idea by pulling the three-dimensional shape, the cube, parallel to

(\) (2)

(5) (~)

(4-) 3)

(8) (~)

Chapter 8

378

itself , into another dimension . Remember that the fourth dimension must be at

right angles to the other three , as each of them were to each other . OK ?

We can choose whatever visual convention we want to represent all this .

Let ' s select the convention of pulling the cube down and to the right . Why not ?

Spatial systems are only conventions , aren ' t they ? We can do anything we want

as long as the eye is given some depth cue so that the drawing can be read . So

let ' s pull the cube (1) - (2) - (3) - (4) - (5) - (6) - (7) - (8) down and to the right into the

stylized fourth dimension . Connect the vertices and we have what is known as a

four - dimensional hypercube .

(I) (2 -)

' 5") (6) ~

(4 -)

lB)

" " -

Play with this hypercube convention a bit . Can you invent an alternative

scheme for looking into four - dimensional scenes ?

What about hyperpyramids , hyperspheres , hypercylinders ? Can you draw

a shaded hyper - NHEDRON with nice perspective ? Do some 4D modeling , but

remember to state your space conventions in words so that people can read your

dra wings .

Chapter 9
Closu re

" Purpose shapes process . Discovery depends not on special processes but on

special purposes . Creating occurs when ordinary mental processes in an able

person are marshaled by creative or appropriately ' unreasonable ' intentions . "

D . N . Perkins

Unreasonable intentions

Fifteen years ago , soon after I arrived in Paris , I signed up for a poetry workshop

at the Center for Students and Artists on boulevard Raspail . There were five of

us in the class - plus the teacher . I liked the woman but questioned her teaching

methods . She assigned a specific exercise each week , and we were to return the

next to read our solution . I found the exercises overly structured and ridiculous ,

and I planned to show her how silly they were by slavishly following her tasks .

My results , I was convinced , would vindicate my feelings . And then she gave the

" accident " assignment ; I remember it vividly .

We were to write a short poem on a local accident . How trite , I thought . On

the late afternoon of the " accident " class , I returned to my section of the city

grimly determined to find and report on some street mishap . I wandered around

my shopping spot , the rue Lepic , hoping that something would happen . And

something did , horns blew , and I rushed down the street only to slip on some ice ,

fallen from a bin of fish . I slammed into a table of fish - covered ice : an

Chapter 9

accidental meeting with fish . That was the title I found on the street. I went

home and got on easily with the exercise.

I am no poet , but I wrote the best poetry that I have ever written in that

class . The reason for my success was , I think , that I passionately sought out my

own form for each given problem . Although I wasn 't sure what the form would

be , I knew that I would have to explore before I found it . Very unreasonable

intentions .

Problem finders

Jacob Getzels and Mihaly Csikszentmihalyi studied the ways male art students

at the Art Institute of Chicago explored the problems that were assigned to

them ; the results were published in a book called The creative vision : a

longitudinal study of problem finding in art (John Wiley , New York , 1976). For

example , these students were asked to select a set of objects from a number

provided and arrange them in preparation for drawing a still life . The qualities

of the drawings were compared with the methods the students used to approach

and structure the exercise . The researchers followed the students for seven years

after graduation to track their success . The form of their success , or lack of it ,

was then compared with what the authors called their " problem finding styles "

while in art school . Can you guess the results ?

Getzels and Csikszentmihalyi found a relationship between a student 's

working procedures and both the quality of his student work and his

professional success seven years later . The most effective work - in art school

and later - came from students who selected the most unusual objects and who

spent most time arranging and manipulating these objects before they started to

draw . They began their work without having any specific conception of the

organizational structure they wanted to capture in their arrangement of objects ;

in fact , they seemed to discover a structure that they liked through handling

the objects and moving them about . As their drawings progressed , the more

380

Closure

Exploratory facility

381

imaginative students tended to rearrange their objects, to introduce new elements

or to eliminate others . They changed paper , switched drawing media , and

changed their drawing position more often than their less successful classmates.

And when they were finished , these students said that elements in their final

drawings still might be changed without destroying its character.

In addition to working styles, these researchers found that a concern for

fundamentals also affected creative production . The effective problem finders-

Getzels and Csikszentmihalyi 's label for those students who found and

structured their own problems - tended to describe their work as being based on

matters of deep personal concern to them, even when these themes were not

visually present . It seemed as if the energy for the realization of the problem

finders ' exploratory style was funded by their passions.

I wrote this book with the conviction that a personal problem -finding ability is

necessary for real creativity . But how can this ability be encouraged in the

realm of visual problems when most students suffer from a lack of exploratory

facility ? They may have the passions , but they lack a sufficient visual

vocabulary and the most basic artistic skills and will that could have helped

them start fashioning a personal vision language. I am convinced tha t visual

modeling can substitute for these lacks. How ?

Visual modeling is an environment in which you can offer yourself the gift

of seeing on your own terms. The attendant luxuries - design skills , rich visual

word -images and metaphors - are all there, inside that space. The substance of

this book is to offer you sight of this kind of environment . But you must not stop

here. You must extend modeling into your own worlds .

A final illustration

I wanted

throughout

nonperiodic

Chapter 9

Premature closure

We haven't spoken of closure since Chapter 2. As a design spreads itself onto the

surface of your screen, it may eventually repeat itself or close on top of itself .

Closure may come very soon, or only after many " rotations " of your visual

machinery . Be on your guard , though . Premature closure, like dea th and entropy ,

must be fought . Change your arguments, or change the models, or find another

problem . But always look through closed figures ; there may be others, just

behind them, that are far more intriguing .

All the images in this book are now closed, or are they?

Reading list

to end with the same simple polygons we have labored with

this book but in a design that did not, and would not, close. It is a

tile pattern .

I am sure that the character of this book would not be changed if I, like Getzels

and Csikszentmihalyi 's problem -finders , changed some of its elements. I feel

the same about the following list of books. I present a relatively short selection

382

Closure

Visual thinking, University of California Press, Berkeley and Los Angeles, 1969.

383

the third book .

Harold Abelson and Andrea diSessa , Turtle geometry : the computer as a medium

for exploring mathematics , The MIT Press , Cambridge , 1981 .

Brian Harvey , Computer science Logo style , 3 volumes , The MIT Press ,

Cambridge , 1985 , 1986 , 1987 .

Seymour Papert , Mindstorms ; children , computers and powerful ideas , Basic

Books , New York , 1980 .

Ps ~ cholog)::

Read anything by Rudolf Arnheim . Here is a short selection :

of some of the books that I found useful . Each of them encouraged me to think

differently about visual modeling . Like everything else that I have offered you ,

it is a personal selection . I have not repeated the books I mentioned in the text .

Turtle gra ~ hics and the Logo language

To my mind , most Logo books are useless . There are three exceptions , however ,

that are quite wonderful - each for quite different reasons . The first uses the

notion of turtle geometry to explore mathematics , while the second

investigates - through Logo programming - the ideas of computer science . Both

books require familiarity with mathematics and are not easy reads . However ,

most of your work on the exercises in this book could be aided by selected reading

in the Abelson and diSessa book , while your Logo programming style would be

extended and enriched by a careful study of Brian Harvey ' s books .

Finally , if you have never read about the philosophy behind the invention

of Logo , you should read the word from Seymour Papert , the inventor himself , in

Chapter 9

Entropy and art, University of California Press, Berkeley and Los Angeles, 1971.

Press,

New essays on the psychology of art , University of California Press, Berkeley

Art and visual perception: a psychology of the creative eye, University of

California Press, Berkeley and Los Angeles, 1974.

The power of the center: a study of composition in the visual arts, University of

California Berkeley and Los Angeles, 1982.

and Los Angeles, 1986.

Next , a hodgepodge of titles that I found of interest . They will lead you to other

sources.

Carl Jung, editor , Man and his symbols, Doubleday & Company , New York , 1964.

and experimental

of graphic production processes, Cambridge University Press, Cambridge ,

thinking,

Ellen Winner , Invented worlds: the psychology of the arts, Harvard University

the development of creative capacity , Harper &

384

 E . H . Gombrich , Art and illusion : a study in the psychology of pictorial

representation , Princeton University Press , Princeton , New Jersey , 1960 .

Ned Block , editor , Imagery , The MIT Press , Cambridge , 1981 .

Peter van Sommers , Drawing and cognition : descriptive

studies

1984 .

D. N . Perkins , The mind 's best work: a new psychology of creative

Harvard University Press, Cambridge , 1981.

Press, Cambridge, 1982.

William J. J. Gordon, Synectics:

Row, New York, 1961.

Closure

Liam Hudson , Contrary imaginations: a psychological study of the English

schoolboy, Methuen , London , 1966.

Other design books I like :

introduction to symmetry inPeter S. Stevens, Handbook of regular patterns: an

two dimensions, The MIT Press, Cambridge , 1984.

385

Mildred L. G. Shaw, On becoming a personal scientist: interactive computer

elicitation of personal models of the world, Academic Press, London , 1980.

Chapter 9

Charles Bouleau , The painter 's secret geometry: a study of composition

Harcourt , Brace & World , New York , 1963.

in art ,

Magnus J. Wenninger , Polyhedron models, Cambridge University Press,

Cambridge, 1971.

Magnus J. Wenninger , Spherical models, Cambridge University Press,

Cambridge, 1979.

D'Arcy Wentworth Thompson , On growth and form, Cambridge University

Press, Cambridge, 1961.

Dover press publications are a treasure trove of design ideas . They are located at

180 Varick Street, New York, NY 10014. Write them for their catalogue.

Finally , find a library that takes the following journal . It is quirky and quite

wonderful : Leonardo: journal of the international society for the arts, sciences,

and technology.

Art his t ! : X

Go to museums and galleries and buy lots of postcard reproductions .

A mixed bag of things

Judith Wechsler , editor , On aesthetics in science, The MIT Press, Cambridge ,

1978 .

Benoit Mandelbrot , The fractal geometry of nature, W. H . Freeman and

Company, San Francisco, 1977.

Douglas R. Hofstadter , Cadel, Escher, Bach, Basic Books, New York , 1979.

386

Closure

Douglas R. Hofstadter , Metamagical themas: questing for the essence of mind

and pattern, Basic Books, New York , 1985.

Rudy Rucker, The fourth dimension, and how to get there, Rider and Company ,

London, 1985.

Press, Oxford, 1986.

Edward R. Tufte, The visual display of quantitative information, Graphics

Press, Cheshire, Connecticut, 1983.

Christopher Alexander , Sara Ishikawa , and Murray Silverstein , A pattern

language: towns, building, and construction, Oxford University Press, New York ,

1977.

387

William Poundstone , The recursive universe: cosmic complexity and the limits of

scientific knowledge, William Morrow and Company , New York , 1985.

Istvan Hargittai , editor , Symmetry: unifying human understanding, Pergamon

Index

ADD.POINT, 360

A.PIPEGON, 49

copying, 4

crescent machine , 68

CROSS , 126

Csikszentmihalyi , Mihaly , 380

CSTEP , 174

cubist space , 371

Delaunay , Robert, 83

Delaunay experiments, 89

Delaunay machine, 83

depth cues, 156, 338

dialects of Logo , 6

DOUBLE . RINGS , 85

E . BOX , 344

emotion grid , 234

EMPTY . BAG , 360

enclosing nephroids , 339

equipment, 5

Escher , M . C ., 340

Escher box , 340 , 343 , 366

EVAL , 239

exploratory facility , 381

EXPLORE , 73

eye's conception of space, 366

Farkas , Tamas , 373

Index

FIVE . TARGET, 88

FLAG, 174, 175

flag modeling, 212

FLAS H, 51

390

hyperpyramid , 378

hypersphere , 378

imaginary machines, 54

impossible space grids , 373

INGON , 121

IRSTEP , 239

Islamic art , 216 , 235

Japanese pen -and -ink trees , 321

Kandinsky , Wassily , 193

Kandinsky grids , 193

Kelly , George, 58

Klimt , Gustav , 326

LAY , 180

LAY . HEX . TILES , 82

LAY . SQ . TILES , 79

LAY . TR . TILES , 81

light source arguments, 371

lists , 165 - 169 , 172 - 173 , 189 , 236 -237 ,

295 , 321 , 359 -361

local variables , 140

log grids , 230

Logo mechanics, 2

L . PIPEGON , 51

mandalas , 158

MARK . 13 , 132

MARK . 16 , 133

mason mark designs, 128

Mayan -inspired grid , 179

focusing random grids, 196

FOUR. TARGET, 88

fractal, 144, 146

FRACTALGON, 146, 330

fractal landscapes, 330-336

fractal mountain machine, 336

FRUIT, 294

FRUIT.LIST .TREE, 295

generalize, 164, 212

generalized Gothic stone mason

mark, 133-135, 160

generalized nephroids, 150

generalizing, 12, 16, 69, 133, 184, 188

Getzels, Jacob, 380

GIVE. MOTIF, 173

GIVE.PT, 166

global variables, 140

G.MARK, 134

GO.PT, 168

GO. RANDOM. SCREEN, 186

grid machine, 237

grid of stylized faces, 213

Hackney, David, 231

hypercube, 378

hypercylinder, 378

Index

M.BOX, 201

M.EXPLORE, l34

MF . TREE, 294

391

PIP , 243

PIPEGON , 46 , 47

placement (as perspective device),

163

placement ambiguity , 346

pointillist trees, 319

pool -light grids , 231

premature closure , 382

probabilistic grids , 205

probabilistic selection, 201

problem finders, 380

problem -solving style, 64

procedure presentation style, 22

procedures, 10

programming as craft, 3

pyramid graphics, 366

quality of edges, 255

quality of polygon lines, 136

random components , 182

randomized trees , 306

randomness - within - a - structure , 286

RANDOM . NUMBER , 183

random numbers , 182

RANDOM . PLACER , 187 , 188

RANDOM . PLACER . X , 191

random rectangular grid , 182

random screen locations , 183

RAND. TREE, 3q6

reading objects in space, 337

minimal design elements, 241

modeled one-point perspective, 358

modeling, 115

models, 34

Mondrian, Piet, 162, 199, 214

motif, 164

MOTIF list, 172

M.TREE, 294

NARROW. SPLINES, 86

NEPHROID, 150

nephroids, 148

NEST.DEMO, 244

NGON, 17, 47

NHEDRON, 359, 361

NIGHT. SHADE, 350

one-point perspective, 356

one-point perspective experiments,

361

ONE. TARGET, 87

overlapping designs, 264

overlapping grids, 351

overlapping shapes, 349

painter's algorithm, 350

personal mark, 111-114

perspective, 354

P.GET, 203

Index

RECGON, 94, 96

RECORD.Pos, 178

rectangular grids, 169

recursing polygons, 94

recursing squares, 125

recursing trees, 287

recursion, 20, 92, 97, 119, 124, 144,

288

recursion diagram, 99-101, 124-125

recursive design features, 119

RESTORE.POS, 179

RIFLAG, 238

RIM. FLAG, 349

RIM. ROWER, 349

RIM. RSTEP, 349

RING. DEMO, 269

RINGS, 269, 270

ROT, 237

ROWER, 238

RR, 185, 304

RSTEP, 174

rug designs, 277

SAW. DEMO, 261

SAWGON, 260

SEED, 300

Seurat, George, 321

SHADE, 344

SHADED.DEMO, 345

shaded pyramids, 366

shading schemes, 340

392

size variation (as perspective

device), 347

stone mason marks , 107 - 110 , 117

SPIN , 70

SPIN . CONGON, 70

SPINGON , 20

S . PIPEGON , 50

SPIRAL , 180

SQ, 139

SQ . EXPLORE , 125

SQUARES , 124 , 125

star and saw blade , 257

STAREDGE , 140

STARGON , 140

STAR . NEPHROID , 152

stars , 137

state transparency , 65 , 70 , 175 - 179 ,

287 , 291

stopping recursive procedures , 22

story boards , 169 - 171

S . TREE , 288

STRIPES , 131

surface shading , 340

symmetry , 163 -164

tarot deck , 159 - 160

TEEPEE , 177

teepee sha pe , 177

Terrapin MacLogo , 6

three - point perspective , 357

tile design , 240

Index

: shapes, 78 zodiac, 159

393

tiling spinning

tinkering , 4

TIPGON, 127

TIP . STARGON , 152

TP1 , 178

TP2 , 179

TP . DEMO , 257

TPGON , 252 , 253

tree experiments , 288-290

turtle reference commands , 8

turtle space , 7

turtle walk , 25 , 41 - 46 , 122 - 124 , 138 ,

149 , 169

TV test pattern , 213

two-point perspective, 357

TWO . TARGET , 87

unreasonable intentions , 379

van de Velde, Henry , 321

vanishing points , 361

VERIFY , 204

visual experiments , 72-73

visual sensitivity analysis, 75

Warhol , Andy , 213

weed model , 299

WIDE . SPLINES , 86

windowing , 188-189

WING , 269

ZIP , 162

ZIPM , 162

The MIT Press, with Peter Denning, general consulting editor , and
Brian Randell, European consulting editor , publishes computer sci-
ence books in the following series:

ACM Doctoral Dissertation Award and Distinguished Dissertation Series

Artificial Intelligence, Patrick Winston and Michael Brady , editors

Charles Babbage Institute Reprint Series for the History of Computing,
Martin Campbell-Kelly , editor

Computer Systems, Herb Schwetman, editor

Exploring with Logo, E. Paul Goldenberg, editor

Foundations of Computing, Michael Garey, editor

History of Computing, I . Bernard Cohen and William Aspray , editors

Information Systems, Michael Lesk , editor

Logic Programming, Ehud Shapiro, editor ; Fernando Pereira, Koichi
Furukawa, and D . H . D. Warren, associate editors

The MIT Electrical Engineering and Computer Science Series

Scientific Computation, Dennis Gannon, editor

	0262530694.0005.PDF
	C:/mitp/local/PDF/temppdf604/Intermediate/0262530694.0005.tif

	0262530694.0070.PDF
	C:/mitp/local/PDF/temppdf604/Intermediate/0262530694.0070.tif

	0262530694.0090.PDF
	C:/mitp/local/PDF/temppdf604/Intermediate/0262530694.0090.tif

	0262530694.0291.PDF
	C:/mitp/local/PDF/temppdf604/Intermediate/0262530694.0291.tif

	0262530694.0314.PDF
	C:/mitp/local/PDF/temppdf604/Intermediate/0262530694.0314.tif

	0262530694.0322.PDF
	C:/mitp/local/PDF/temppdf604/Intermediate/0262530694.0322.tif

	0262530694.0355.PDF
	C:/mitp/local/PDF/temppdf604/Intermediate/0262530694.0355.tif

	0262530694.0366.PDF
	C:/mitp/local/PDF/temppdf604/Intermediate/0262530694.0366.tif

