177 lines
4.6 KiB
Plaintext
177 lines
4.6 KiB
Plaintext
|
&&&&& Code examples from Chapter 2
|
||
|
|
||
|
&&& Common "library" functions
|
||
|
fn ngon!
|
||
|
fn cngon!
|
||
|
fn arrow!
|
||
|
fn flash!
|
||
|
|
||
|
&&& FIGURE 16
|
||
|
fn pipegon! (pipe_rad
|
||
|
roll_rad
|
||
|
& flash_len
|
||
|
theta
|
||
|
total_angle
|
||
|
n) -> {
|
||
|
if lt? (n, 1) then cngon! (90, pipe_rad)
|
||
|
else {
|
||
|
penup! ()
|
||
|
forward! (add (pipe_rad, roll_rad))
|
||
|
pendown! ()
|
||
|
left! (mult (total_angle, div (pipe_rad, roll_rad)))
|
||
|
& flash! (flash_len)
|
||
|
& cngon! (2, roll_rad)
|
||
|
arrow! (mult (-1.5, roll_rad))
|
||
|
cngon! (90, roll_rad)
|
||
|
rt! (mult (total_angle, div (pipe_rad, roll_rad)))
|
||
|
penup! ()
|
||
|
back! (add (pipe_rad, roll_rad))
|
||
|
left! (theta)
|
||
|
pipegon! (pipe_rad
|
||
|
roll_rad
|
||
|
& flash_len
|
||
|
theta
|
||
|
add (total_angle
|
||
|
theta)
|
||
|
dec (n))
|
||
|
}
|
||
|
}
|
||
|
|
||
|
pipegon! (60, -30, inv (6), 0, 6)
|
||
|
|
||
|
&&& FIGURE 17
|
||
|
fn pipegon! (pipe_rad
|
||
|
roll_rad
|
||
|
& flash_len
|
||
|
theta
|
||
|
total_angle
|
||
|
n) -> {
|
||
|
if lt? (n, 1) then cngon! (90, pipe_rad)
|
||
|
else {
|
||
|
penup! ()
|
||
|
forward! (add (pipe_rad, roll_rad))
|
||
|
pendown! ()
|
||
|
left! (mult (total_angle, div (pipe_rad, roll_rad)))
|
||
|
& flash! (flash_len)
|
||
|
& cngon! (2, roll_rad)
|
||
|
arrow! (mult (-1.5, roll_rad))
|
||
|
& cngon! (90, roll_rad)
|
||
|
rt! (mult (total_angle, div (pipe_rad, roll_rad)))
|
||
|
penup! ()
|
||
|
back! (add (pipe_rad, roll_rad))
|
||
|
left! (theta)
|
||
|
pipegon! (pipe_rad
|
||
|
roll_rad
|
||
|
& flash_len
|
||
|
theta
|
||
|
add (total_angle
|
||
|
theta)
|
||
|
dec (n))
|
||
|
}
|
||
|
}
|
||
|
|
||
|
pipegon! (60, -30, inv (180), 0, 180)
|
||
|
|
||
|
&&& FIGURE 18
|
||
|
fn pipegon! (pipe_rad
|
||
|
roll_rad
|
||
|
& flash_len
|
||
|
theta
|
||
|
total_angle
|
||
|
n) -> {
|
||
|
if lt? (n, 1) then cngon! (90, pipe_rad)
|
||
|
else {
|
||
|
penup! ()
|
||
|
forward! (add (pipe_rad, roll_rad))
|
||
|
pendown! ()
|
||
|
left! (mult (total_angle, div (pipe_rad, roll_rad)))
|
||
|
& flash! (flash_len)
|
||
|
cngon! (2, roll_rad)
|
||
|
& arrow! (mult (-1.5, roll_rad))
|
||
|
& cngon! (90, roll_rad)
|
||
|
rt! (mult (total_angle, div (pipe_rad, roll_rad)))
|
||
|
penup! ()
|
||
|
back! (add (pipe_rad, roll_rad))
|
||
|
left! (theta)
|
||
|
pipegon! (pipe_rad
|
||
|
roll_rad
|
||
|
& flash_len
|
||
|
theta
|
||
|
add (total_angle
|
||
|
theta)
|
||
|
dec (n))
|
||
|
}
|
||
|
}
|
||
|
|
||
|
pipegon! (60, -30, inv (180), 0, 180)
|
||
|
|
||
|
&&& FIGURE 19
|
||
|
fn pipegon! (pipe_rad
|
||
|
roll_rad
|
||
|
flash_len
|
||
|
theta
|
||
|
total_angle
|
||
|
n) -> {
|
||
|
if lt? (n, 1) then cngon! (90, pipe_rad)
|
||
|
else {
|
||
|
penup! ()
|
||
|
forward! (add (pipe_rad, roll_rad))
|
||
|
pendown! ()
|
||
|
left! (mult (total_angle, div (pipe_rad, roll_rad)))
|
||
|
flash! (flash_len)
|
||
|
& cngon! (2, roll_rad)
|
||
|
& arrow! (mult (-1.5, roll_rad))
|
||
|
& cngon! (90, roll_rad)
|
||
|
rt! (mult (total_angle, div (pipe_rad, roll_rad)))
|
||
|
penup! ()
|
||
|
back! (add (pipe_rad, roll_rad))
|
||
|
left! (theta)
|
||
|
pipegon! (pipe_rad
|
||
|
roll_rad
|
||
|
flash_len
|
||
|
theta
|
||
|
add (total_angle
|
||
|
theta)
|
||
|
dec (n))
|
||
|
}
|
||
|
}
|
||
|
|
||
|
pipegon! (60, -30, 40, inv (180), 0, 180)
|
||
|
|
||
|
&&& FIGURE 20
|
||
|
& The mathematics of spirographs
|
||
|
& The "degree of symmetrey" is the denominator of the
|
||
|
& most reduced fraction of the ratio of the two circle dimensions
|
||
|
& And, drawing something internally (as opposed to externally)
|
||
|
& the star doubles its number of points.
|
||
|
& To draw a 40-pointed star (which is what is in _VMwL), you need
|
||
|
& a fraction with a prime number in the numerator and 20 in the
|
||
|
& denominator.
|
||
|
|
||
|
& The other determinant of what the pipegon spirograph looks like
|
||
|
& is the frequency with which you draw your "stripe"
|
||
|
& I believe the diagrams in the book use 72 iterations/rotation,
|
||
|
& for 5º per iteration. That's what's below, but there are many
|
||
|
& I prefer. 45 iterations gives a lovely pentagon in the middle, 100
|
||
|
& iteration is lovely.
|
||
|
|
||
|
& the iteration of these below is s_pipegon!
|
||
|
pipegon! (400, -140, inv (72), 0, mult (1, 72))
|
||
|
pipegon! (400, -140, inv (72), 0, mult (2, 72))
|
||
|
pipegon! (400, -140, inv (72), 0, mult (3, 72))
|
||
|
pipegon! (400, -140, inv (72), 0, mult (4, 72))
|
||
|
pipegon! (400, -140, inv (72), 0, mult (5, 72))
|
||
|
pipegon! (400, -140, inv (72), 0, mult (6, 72))
|
||
|
pipegon! (400, -140, inv (72), 0, mult (7, 72))
|
||
|
|
||
|
&&& FIGURE 21.1-4: larger roller than pipe, internally
|
||
|
& Again, all are s_pipegon!s
|
||
|
& 21.1
|
||
|
pipegon! (500, -600, inv (72), 0, mult (3, 72))
|
||
|
& 21.2
|
||
|
rt! (inv (18)); pipegon! (450, -500, inv (72), 0, mult (5, 72))
|
||
|
& 21.3
|
||
|
rt! (0.125); pipegon! (400, -600, inv (72), 0, mult (3, 72))
|
||
|
& 21.4
|
||
|
pipegon! (200, -600, inv (72), 0, mult (3, 72))
|